Skip to main content Accessibility help
×
Home

Nanostructures in Uranium Oxocompounds

  • Sergey V. Krivovichev (a1), Ivan G. Tananaev (a2) and Boris F Myasoedov (a3)

Abstract

Examples of uranium-oxide-based nanostructures are considered, including 2D organic-inorganic nanocomposites and nanotubules. In nanocomposites, interfacial interactions between organic and inorganic substructures can be studied by charge-density matching principle. Application of this principle to uranyl compounds requires special attention since surface area of uranyl-based 2D units is higher than that of other inorganic oxysalts units (i.e. metal phosphates). The charge-density matching principle is, however, observed either through tail interdigitation (for long-chain monoamines) or incorporation of acid-water interlayers into organic substructure (for long-chain diamines). In some compounds, protonated amine molecules form cylindrical micelles that involves self-assembly governed by competing hydrophobic/hydrophillic interactions. The flexible inorganic complexes present in the reaction mixture could then form around cylindrical micelles to produce highly undulated 2D sheets or nanotubules.

Copyright

References

Hide All
1. Rao, C.N.R. and Cheetham, A.K., J. Mater. Chem. 11, 2887 (2001).
2. Rao, C.N.R. and Govindaraj, A., Nanotubes and Nanowires (RSC Publishing, Cambridge, 2005).
3. Burns, P. C., Kubatko, K.-A. Hughes, Sigmon, G., Fryer, B. J., Gagnon, J. E., Antonio, M. R., Soderholm, L., Angew. Chem. Int. Ed. 44, 2135 (2005).10.1002/anie.200462445
4. Krivovichev, S. V., Kahlenberg, V., Kaindl, R., Mersdorf, E., Tananaev, I. G. and Myasoedov, B. F., Angew. Chem. Int. Ed. 44, 1134 (2005).10.1002/anie.200462356
5. Krivovichev, S. V., Kahlenberg, V., Kaindl, R., Mersdorf, E., Tananaev, I. G. and Myasoedov, B. F., J. Amer. Chem. Soc. 127, 1072 (2005).10.1021/ja0436289
6. Albrecht-Schmitt, Th., Angew. Chem. Int. Ed. 44, 4836 (2005).10.1002/anie.200500936
7. Burns, P. C., Miller, M. L. and Ewing, R. C., Can. Mineral. 34, 845 (1996).
8. Burns, P. C., Ewing, R. C. and Hawthorne, F. C., Can. Mineral. 35, 1551 (1997).
9. Krivovichev, S. V. and Kahlenberg, V., Z. Naturforsch. 62b, 538 (2005).10.1515/znb-2005-0510
10. Krivovichev, S. V. and Kahlenberg, V., J. Alloys Compds 389, 55 (2005).10.1016/j.jallcom.2004.08.019
11. Krivovichev, S. V. and Kahlenberg, V., Z. Anorg. Allg. Chem. 630, 2736 (2004).
12. Krivovichev, S. V. and Kahlenberg, V., Z. Anorg. Allg. Chem. 631, 739 (2005).
13. Krivovichev, S. V. and Kahlenberg, V., Radiochemistry 47, 412 (2005).
14. Krivovichev, S. V. and Kahlenberg, V., Radiochemistry 47, 415 (2005).
15. Krivovichev, S. V. and Kahlenberg, V., J. Alloys Compds 395, 41 (2005).
16. Krivovichev, S. V. and Kahlenberg, V., Z. Anorg. Allg. Chem. 631, 2352 (2005).10.1002/zaac.200400505
17. Krivovichev, S. V. and Kahlenberg, V., Z. Anorg. Allg. Chem. 631, 2358 (2005).
18. Krivovichev, S. V., Kahlenberg, V., Kaindl, R. and Mersdorf, E., Eur. J. Inorg. Chem. 2005, 16531656.
19. Krivovichev, S. V., Tananaev, I. G., Kahlenberg, V. and Myasoedov, B. F., Dokl. Phys. Chem. 403, 124 (2005).
20. Blatov, V. A., Serezhkina, L. B., Serezhkin, V. N. and Trunov, V. K., Koord. Khim. 14, 1705 (1988).
21. Monnier, A., Schuth, F., Huo, Q., Kumar, D., Margolese, D., Maxwell, R. S., Stucky, G. D., Krishnamurty, M., Petroff, P., Firouz, A., Janicke, M. and Chmelka, B. F., Science 261, 1299 (1993).10.1126/science.261.5126.1299
22. Maggard, P. A. and Boyle, P. D., Inorg. Chem. 42, 4250 (2003).10.1021/ic0342649
23. Haskouri, J.E., Roca, M., Cabrera, S., Alamo, J., Beltrán-Porter, A., Beltrán-Porter, D., Marcos, M. Dolores, and Amorós, P., Chem. Mater. 11, 1446 (1999).
24. Feng, P., Bu, X., and Stucky, G. D., Inorg. Chem. 39, 2 (2000).10.1021/ic991026y
25. Tolbert, S. H., Landry, C. C., Stucky, G. D., Chmelka, B. F., Norby, P., Hanson, J. C. and Monnier, A., Chem. Mater. 13, 2247 (2001).
26. Sassoye, C., Loiseau, T., and Férey, G., J. Fluor. Chem. 107, 187 (2001).10.1016/S0022-1139(00)00357-2
27. Krivovichev, S. V. and Burns, P. C., J. Solid State Chem. 170, 106 (2003).10.1016/S0022-4596(02)00033-6
28. Krivovichev, S. V., Crystallogr. Rev. 10, 185 (2004).
29. Iijima, S., Nature 354, 56 (1991).
30. Patzke, G. R., Krumeich, F., and Nesper, R., R. Angew. Chem. Int. Ed. 41, 2446 (2002).10.1002/1521-3773(20020715)41:14<2446::AID-ANIE2446>3.0.CO;2-K
31. Krush-Elbaum, L., Newns, D. M., Zeng, H., Derycke, V., Sun, J. Z., and Sandstrom, R., Nature 431, 672 (2004).
32. Krivovichev, S. V., Yakovenchuk, V. N., Armbruster, T., Döbelin, N., Pattison, P., Weber, H.-P. and Depmeier, W., Amer. Mineral. 89, 1561 (2004).
33. Krivovichev, S. V. and Burns, P. C., Radiochem. 46, 408 (2004).
34. Krivovichev, S. V. and Burns, P. C., Z. Kristallogr. 218, 683 (2003).
35. Krivovichev, S. V. and Burns, P. C., Z. Kristallogr. 218, 725 (2003).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed