Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-25T13:47:51.392Z Has data issue: false hasContentIssue false

Nanostructured Silicon thin films Deposited by PECVD in the Presence of Silicon Nanoparticles

Published online by Cambridge University Press:  15 February 2011

G. Viera
Affiliation:
Dep. Física Aplicada i Electrònica, Universitat de Barcelona. Avgda. Diagonal, 647, E08028 Barcelona, Spain.
P. Roca i Cabarrocas
Affiliation:
Laboratoire de Physique des Interfaces et des Couches Minces. (CNRS, UPR 258), Ecole Polytechnique, F91128 Palaiseau, France.
S. Hamma
Affiliation:
Laboratoire de Physique des Interfaces et des Couches Minces. (CNRS, UPR 258), Ecole Polytechnique, F91128 Palaiseau, France.
S. N. Sharma
Affiliation:
Dep. Física Aplicada i Electrònica, Universitat de Barcelona. Avgda. Diagonal, 647, E08028 Barcelona, Spain.
J. Costa
Affiliation:
Grup de Recerca en Materials, Dept. d'Enginyeria Industrial Universitat de Girona Avgda, Lluis Santaló s/n E17071 Girona, Spain
E. Bertran
Affiliation:
Dep. Física Aplicada i Electrònica, Universitat de Barcelona. Avgda. Diagonal, 647, E08028 Barcelona, Spain.
Get access

Abstract

Nanostructured silicon thin films have been deposited by plasma enhanced chemical vapor deposition at low substrate temperature (100 °C) in the presence of silicon nanoparticles. The nanostructure of the films was revealed by transmission electron microscopy, Raman spectroscopy and X-ray diffraction, which showed ordered silicon domains (1–2 nm) embedded in an amorphous silicon matrix. These ordered domains are due to the particles created in the discharge that contribute to the film growth. One consequence of the incorporation of nanoparticles is the accelerated crystallization of the nanostructured silicon thin films when compared to standard a-Si:H, as shown by the electrical characterization during the annealing.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Spears, K.G., Robinson, T.J. and Roth, R.M., IEEE Trans. Plasma Sci PS–14, p.179 (1986).Google Scholar
2. Ross, R.C., Jaklik, J., J. Appl. Phys. 55, p. 3785 (1984).Google Scholar
3. Proceedings of the 39th National Symposium of the American Vacuum Society, Part I, J. Vac. Sci. Technol A, 11, p. 11191141 (1994).Google Scholar
4. Proceedings of the NATO Advanced Research Workshop: Formation. Transport, and Consequences of Particles in Plasmas, Plasmas Sources Sci. Technol., 3, p. 239451 (1994).Google Scholar
5. Roca i Cabarrocas, P., J. Non-Cryst. Solids 164–166, p. 37 (1993).Google Scholar
6. Lloret, A., Bertran, E., Andújar, J.L., Canillas, A. and Morenza, J.L., J. Appl. Phys. 69, p. 632 (1991).Google Scholar
7. Roca i Cabarrocas, P., Gay, P. and Hadjadj, A., J. Vac. Sci. and Technol., 14, p. 655 (1996).Google Scholar
8. Howling, A.A., Dorier, J.-L. and Hollenstein, Ch., Appl. Phys. Lett., 62, p. 1341 (1993)Google Scholar
9. Bertran, E., Costa, J., Sardin, G., Campmany, J., Andújar, J.L. and Canillas, A., Plasma Sources Sci. Technol. 3, p. 348 (1994).Google Scholar
10. Costa, J., Roura, P., Sardin, G., Morante, J.R. and Bertran, E., Appl. Phys. Lett. 64, p. 463 (1994).Google Scholar
11. Roca i Cabarrocas, P., Chevrier, J.B., Hue, J., Lloret, A., Parey, J.Y. and Schmitt, J.P.M., J. of Vac. sci. and Technol. 9, p. 2331 (1991)Google Scholar
12. Roca i Cabarrocas, P., Hamma, S., Bertran, E., Sharma, S.N., Viera, G. and Costa, J., to be publishedGoogle Scholar
13. Guinier, A., X-ray Diffraction. ed. Freeman, San Francisco, CA, p. 124. (1963)Google Scholar
14. Veprek, S., Iqbal, Z. and Sarott, F.A., Phil. Mag. B 45, p. 137 (1982).Google Scholar
15. He, Y., Yin, C., Cheng, G., Wang, L., Liu, X. and Hu, G.Y., J. Appl. Phys., 75, 797 (1994).Google Scholar
16. Sharma, S.N., Bandyopadhyay, A.K., Banerjee, R., Batabyal, A.K. and Barua, A.K., Phys. Rev. B 43, p. 4503 (1991).Google Scholar
17. Boufendi, L., Plain, A., Ph, J.. Blondeau, , Bouchule, A., Laure, C. and Toogood, M., Appl. Phys. Lett., 60 p. 169(1992).Google Scholar
18. Luedtke, W.D. and Landman, U., Phys. Rev. B, 37, p. 4656 (1988).Google Scholar