Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-24T07:05:57.866Z Has data issue: false hasContentIssue false

Nanostructured Polymer Brushes With Reversibly Changing Properties

Published online by Cambridge University Press:  01 February 2011

Denys Usov
Affiliation:
Institut für Polymerforschung Dresden, Hohe Strasse 6, 01069 Dresden, Germany.
Manfred Stamm
Affiliation:
Institut für Polymerforschung Dresden, Hohe Strasse 6, 01069 Dresden, Germany.
Sergiy Minko
Affiliation:
Institut für Polymerforschung Dresden, Hohe Strasse 6, 01069 Dresden, Germany.
Christian Froeck
Affiliation:
Institut für Polymerforschung Dresden, Hohe Strasse 6, 01069 Dresden, Germany.
Andreas Scholl
Affiliation:
Advanced Light Source, Lawrence Berkeley National Laboratory, MS 6-2100, Berkeley, CA 94720, USA.
Marcus Müller
Affiliation:
Institut für Physik, Johannes Gutenberg Universität, D-55099 Mainz, Germany.
Get access

Abstract

We investigated the interplay between different mechanisms of the lateral and vertical segregation in the synthesized via “grafting from” approach symmetric A/B (where A and B are poly(styrene-co-2,3,4,5,6-pentafluorostyrene) and poly(methylmethacrylate), respectively) polymer brushes upon exposure to different solvents. We used X-ray photoemission electron spectroscopy and microscopy (X-PEEM), AFM, water contact angle measurements, and oxygen plasma etching to study morphology of the brushes. The ripple morphology after toluene (nonselective solvent) revealed elongated lamellar-like domains of A and B polymers alternating across the surface. The dimple-A morphology consisting of round clusters of the polymer A was observed after acetone (selective solvent for B). The top layer was enriched with the polymer B showing that the brush underwent both the lateral and vertical phase segregation. A qualitative agreement with predictions of SCF theory was found.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Alexander, S. J., J. Phys (Paris) 38, 977, (1977).Google Scholar
2. Halperin, A., Tirrell, M., Lodge, T. P., Adv. Polym. Sci. 100, 31, (1992).Google Scholar
3. Zhao, B., Brittain, W.J., Prog. Polym. Sci. 25, 677, (2000).and references therein 4. A.Sidorenko, S.Minko, K. Schenk-Meuser, H.Duschner, M.Stamm, Langmuir 15, 8349 (1999).Google Scholar
5. Minko, S., Usov, D., Goreshnik, E., Stamm, M., Macromol. Rapid Commun. 22, 206, (2001).Google Scholar
6. Minko, S., Patil, S., Datsyuk, V., Simon, F., Eichhorn, K.-J., Motornov, M., Usov, D., Tokarev, I., Stamm, M., Langmuir 18, 289, (2002).Google Scholar
7. Zhao, B., Brittain, W. J., J. Am. Chem. Soc. 117, 3557, (1995); W. Zhou, S. Z. D. Cheng, Macromolecules 33, 8821, (2000).Google Scholar
8. Wang, J., Kara, S., Long, T. E., Ward, T. C., Journal of Polym. Science: Part A: Polym. Chem. 38, 3742, (2000).Google Scholar
9. Müller, M., Phys. Rev. E (unpublished).Google Scholar
10. Minko, S., Müller, M., Usov, D., Scholl, A., Froeck, C., Stamm, M., Phys. Rev. Lett. 88, 035502, (2002).Google Scholar
11. Boyen, G., Oosterling, M. L. C. M., Challa, G., Schouten, A. J., Polymer 31, 2377, (1990).Google Scholar
12. Cossy-Favre, A., Díaz, J., Liu, Y., Brown, H. R., Samant, M. G., Stöhr, J., Hanna, A. J., Anders, S., Russell, T. P., Macromolecules 31, 4957, (1998).Google Scholar
13. Morin, C., IkeuraSekiguchi, H., Tyliszczak, T., Cornelius, R., Brash, J. L., Hitchcock, A. P., Scholl, A., Nolting, F., Appel, G., Winesett, D. A., Kaznacheyev, K., Ade, H., J. Electron Spectrosc. 121, 203, (2001).Google Scholar