Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-20T01:38:10.526Z Has data issue: false hasContentIssue false

Nanosphere Lithography: Synthesis and Application of Nanoparticles with Inherently Anisotropic Structures and Surface Chemistry

Published online by Cambridge University Press:  17 March 2011

Christy L. Haynes
Affiliation:
Department of Chemistry, Northwestern UniversityEvanston, IL 60208-3113, U.S.A.
Amanda J. Haes
Affiliation:
Department of Chemistry, Northwestern UniversityEvanston, IL 60208-3113, U.S.A.
Richard P. Van Duyne
Affiliation:
Department of Chemistry, Northwestern UniversityEvanston, IL 60208-3113, U.S.A.
Get access

Abstract

Early work with size-tunable periodic particle arrays (PPAs) fabricated by nanospherelithography (NSL) demonstrated that the localized surface plasmon resonance (LSPR) could be tuned throughout the visible region of the spectrum. The LSPR is sensitive to changes in nanoparticle aspect ratio and local dielectric environment. This property has recently been exploited to develop a novel method of measuring surface-enhanced Raman scattering (SERS) excitation profiles. Single layer PPAs consist of size-tunable anisotropic nanoparticles that can be modified to exhibit anisotropic surface chemistry. This work demonstrates multiple schemes for PPA modification using self-assembled monolayers and colloid decoration. Nanoparticle anisotropy can be further exploited with the recent combination of NSL and reactive ion etching (RIE); this extends the two-dimensional PPA structure into the third dimension.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Mohamed, M. B., Ismail, K. Z., Link, S., El-Sayed, M. A., Journal of Physical Chemistry B. , 102, 93709374 (1998).Google Scholar
2. Deckman, H. W., Dunsmuir, J. H., Applied Physics Letters , 41, 377379 (1982).Google Scholar
3. Hulteen, J. C., Duyne, R. P. Van, Journal of Vacuum Science and Technology A , 13, 15531558 (1995).Google Scholar
4. Fleischmann, M., Hendra, P. J., McQuillan, A. J., Chemical Physics Letters , 26, 163166 (1974).Google Scholar
5. Jeanmaire, D. L., Duyne, R. P. Van, Journal of Electroanalytical Chemistry , 84, 120 (1977).Google Scholar
6. Moskovits, M., Reviews of Modern Physics , 57, 783826 (1985).Google Scholar
7. Schatz, G. C., The Image Field Effect: How Important Is It?, Surface Enhanced Raman Scattering , eds. Chang, R. K., Furtak, T. E. (Plenum Press, 1982) pp. 3550.Google Scholar
8. Liao, P. F., Bergman, J. G., Chemla, D. S., Wokaun, A., Melngailis, J., Hawryluk, A. M., Economou, N. P., Chemical Physics Letters, 81, 355359 (1981).Google Scholar
9. Lee, P. C., Meisel, D., Journal of Physical Chemistry , 86, 33913395 (1982).Google Scholar
10. Jensen, T. R., Duval, M. L., Kelly, L., Lazarides, A., Schatz, G. C., Duyne, R. P. Van, Journal of Physical Chemistry B , 103, 98469853 (1999).Google Scholar
1. Jensen, T. R., Malinksy, M. D., Haynes, C. L., Duyne, R. P. Van, Journal of Physical Chemistry B , 104, 1054910556 (2000).Google Scholar
12. Cunge, G., Chabert, P., Booth, J., Plasma Sources Science and Technology , 6, 349360 (1997).Google Scholar