Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-25T13:34:52.978Z Has data issue: false hasContentIssue false

Nanoscale/Multilayer Gradient Materials for Application in the Electromagnetic Gun Systems

Published online by Cambridge University Press:  21 February 2011

M.A. Otooni
Affiliation:
US Army Armament Research, Development and Engineering Center, Picatinny Arsenal, NJ
I.G. Brown
Affiliation:
Lawrence Berkeley Laboratory, University of California Berkeley, CA
S. Anders
Affiliation:
Lawrence Berkeley Laboratory, University of California Berkeley, CA
Z. Wang
Affiliation:
Lawrence Berkeley Laboratory, University of California Berkeley, CA
Get access

Abstract

Analysis of fired rails from electromagnetic railguns indicates severe surface damage occurs due to high current arcing and tribological mismatch. We have explored the behavior of several nanoscale multilayered materials as possible routes to improve the thermomechanical properties of the rail and armature materials . Structures investigated include (i) Ti-Co alloy on Ta-Cu alloy on dlc (diamond-like carbon) on stainless steel; (ii) Ti-Co alloy on Ta-Cu alloy on dlc on Cu, (iii) Ti-Co alloy on Ta-Cu on Cu; and (iv) Ti-Co on Ta-Cu alloy on Al. The alloys were all 50:50 at% and film thicknesses were in the range 400-1000 Å. The films were formed using a repetitively pulsed vacuum arc plasma deposition method with substrate biasing- and IBAD-like techniques. The surfaces were characterized by scanning electron microscopy, transmission electron microscopy, Rutherford backscattering spectroscopy, optical microscopy, microhardness measurements, arc erosion resistance and scratch resistance tests. Preliminary results show improvement in the microhardness, arc erosion resistance and scratch resistance, most especially for the dlc-coated surfaces. This kind of multilayered approach to the fabrication of electromagnetic railgun and armature surfaces could be important for future advanced Electromagnetic EM Gun systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Hirano, T., Yamada, T., Nino, M., and Kumakawa, A., A study on a Functionally Gradient Materials Design System for Thrust Chamber. Proc. 16th Int. Symp. on Space Technology and Sciences, pp.23, Sapporo, Japan, May (1988).Google Scholar
2 Erdogan, F. and Bakioglu, M., Stress-Free End Problem in Layered Materials. Int. J. Fractured Mechanics, Vol. 13, pp. 739747, (1977).Google Scholar
Otooni, M., Brown, I., and Foner, S.. Tantalum Ion Implantation Into Cu-12Nb For Electromagnetic Raileun Technology. Mat. Res. Soc. Symp. Proc. vol.316, pp. 569575, (1994).Google Scholar
Yamanuchi, M., Koizumi, M., Hirai, T., and Shiota, I., ed. FGM, Proc. of 1st Int. Symp. on Functionally Gradient materials, FGM Forum, Sendai, Japan, (1990).Google Scholar
5 Niino, M. and Maeda, S., Recent Development Status of Functionally Gradient Materials. I.S.I.J. Int. Vol.30, pp. 699703, (1990).Google Scholar
6 Delale, F. and Erdogan, F., The crack problem for a Nonhomogeneous Plane. ASME M.Appl. M., Vol.50, pp. 609614 (1983).Google Scholar
7 Otooni, M., Graf, A., Colombo, G., Conrad, J., and Sridharan, K.. Application of Coating for Electromagnetic Gun Technology. Mat. res. Soc. Symp., Proc. Vol. 316, pp. 577583, (1993).Google Scholar
8 Batakis, A. P. and Vogan, J. W., Rocket Thrust chamber Thermal Barrier Coating. NASA CR-1750, (1985).Google Scholar
9 Houk, D. L., ed, Thermal Spray; Advances in Coating Technology, Proceeding of The National Spray Conference, pp. 19, Sept. 14-17, Orlando Fl. (1987).Google Scholar
10 Kerrihara, K., Sasaki, K., and Kaewarada, M., Adhesion of Diamond Films. FGM90 Proc. int. Symp. On Functionally Gradient materials, Sendai, (1994).Google Scholar
11 Otooni, M., Graf, A., and Dunham, C., Surface Modification of Electromagnetic Railgun. Mat. Res. Soc. Symp. Proc. Vol. 316, pp. 585592, (1994).Google Scholar
12 Takao, Y., Awanao, M., Kuwahara, Y., and Murase, Y., Preparation of Multilayer and Compositional Gradient Layer Composites by Aerosol Filtration method. National Industrial Research Institute ofNagoya, Mat. Res. Soc. (1994).Google Scholar
13 Alpas, A. T., Embury, J. D., Hardwick, D. A., and Springer, R. W.. J. Mater. Sei. 25, pp. 1603 (1990)Google Scholar
14 Colombier, C. and Lux, B., J. Mater. Sei, 24, pp. 469 (1989).Google Scholar
15 Lyubimov, V. V., Voevodin, A. A., Soassky, S. E., and Yerkhin, A. L., Thin Solid Films 207, pp. 117(1992).Google Scholar
16 Voevodin, A. A. et al. .. Formal Order for Search of the Principle Structure of Multilayer Coating at Their Designing. Phys. Stat. Sol. (a) 145, pp. 565 (1994).Google Scholar
17 Anderson, H. I., Furuhara, T., Rigsbee, T., et al. ., Metali. Trans. 21, pp. 2369, (1990).Google Scholar
18 Bonnet, R., Dutrand, F., Phil. Mag., 32. pp. 997, (1975).Google Scholar
19 Williams, W. S., Trans. Metall. Soc. 236, pp 211 (1966).Google Scholar
20 M. Gajdardziska-Josiffovska and J. M. Cowley, Acta cryst. A47, pp. 74-82, (1991).Google Scholar
21 De. Veirman, A. and van Landuyt, J., Phil. Mag. A, Vol 64, No. 3, pp. 513531, (1991).Google Scholar
22 Hsu, T., Technique of Reflection Electron Microscopy, Micr. Res. and Tech., No, 20, pp. 318332, (1992).Google Scholar
23 Peng, L. M. and Czernuszka, J., Phil. Mag. A, Vol. 64, No. 3, pp. 533541, (1991).Google Scholar
24 Brown, G. (Wiley, New York), pp. 371, (1989).Google Scholar
25 Swanson, A. W. and Bell, A. E., in The Physics and Technology of Ion Sources, edited by brown, I. G. (New York, Wiley), pp. 313, (1989).Google Scholar
26 Wilson, R. G. and Brewer, G. R., Ion Beams with Applications to Ion Implantation (Wiley, New York), (1973).Google Scholar
27 Spsdke, P., Emig, H., Klabunde, J., Ruke, D. M., Wolf, B. H., and Brown, I. G., Nucl. Instrum. Meth. A. 278, 643 (1989).Google Scholar
28 Ruk, D. M., Emig, H., Wolf, B., Brown, I. G., and Torp, Bo, Vacuum 39, pp. 1191, (1989).Google Scholar
29 Zhang, H., Zhang, X., Zhang, S., and Han, Z., Rev. Sci. Instrum, 63, P2431 (1992).Google Scholar
30 Brown, I. G. and Shiraishi, H., EEE, Trans. Plasma Sei. PS-18, pp. 170, (1990).Google Scholar
31 Shiraisi, H. and Brown, I. G., Rev. Sei. Instrum., 61, pp.3775, (1990).Google Scholar
32 Brown, I. G., Dickinson, M. R., Fojas, P. B., and MacGill, R. A., Rev. Sei. Instrum. 65, pp 1441, (1994).Google Scholar
33 brown, I. G., Anders, A., Dickinson, M. R., MacGill, R. A., and Yao, X., IEEE International Conference on Plasma Science, Vancouver, Canada, June 7-9, (1993).Google Scholar
34 Anders, S., Anders, A., Brown, I. G., MacGill, R. A., and Dickinson, M. R., Rev. Sei., Instrum., 65, pp. 1319(1994).Google Scholar
35 Brown, I. G., Anders, A., Anders, S., Dickinson, M. R., Ivanov, I. C., MacGill, R. A., Yao, X.Y., and Yu, K. M., Nucl. Instrum. Meth. Phys. Res. B80/81, 181 (1993).Google Scholar
36 Brown, I. G., Anders, A., Anders, S., Castro, R. A., Dickinson, M. R., MacGill, R. A., and Wang, Z., 9th International Conference on Ion Beam Modification of Materials, Canberra, Australia, Feb.5-10, (1995).Google Scholar
37 MacGill, R. J., Yao, X. Y., Castro, R. A., Dickinson, M. R., and Brown, I. G., J. Vac. Sei. Tech., All, pp. 2856 (1993).Google Scholar