Skip to main content Accessibility help
×
Home

Nanoscale Structure/Property Correlation Through Aberration-Corrected Stem And Theory

  • S.J. Pennycook (a1) (a2), A. R. Lupini (a1), M. Varela (a1), A. Borisevich (a1), M. F. Chisholm (a1), E. Abe (a1) (a3), N. Dellby (a4), O.L. Krivanek (a4), P. D. Nellist (a4), L. G. Wang (a1), R. Buczko (a1) (a2) (a5), X. Fan (a1) and S. T. Pantelides (a1) (a2)...

Extract

The combination of atomic-resolution Z-contrast microscopy, electron energy loss spectroscopy and first-principles theory has proved to be a powerful means for structure property correlations at interfaces and nanostructures. The scanning transmission electron microscope (STEM) now routinely provides atomic-sized electron beams, allowing simultaneous Z-contrast imaging and EELS as shown in Fig. 1. The feasiblity of correcting the inherently large spherical aberration of microscope objective lenses promises to at least double the achievable resolution. The potential benefits for the STEM, however, may turn out to be much greater than those for the conventional TEM because it is very much less sensitive to chromatic instabilities. The 100 kV VG Microscopes HB501UX at Oak Ridge National Laboratory (ORNL) is now fitted with an aberration corrector constructed by Nion Co., which improved its resolution from 2.2 Å (full-width-half-maximum probe intensity) to around 1.3 Å. It is now very comparable in performance to the uncorrected 300 kV HB603U STEM at ORNL which, before correction, also had a directly interpretable resolution of 1.3 Å, although information transfer had been demonstrated down to 0.78 Å8. Initial results after installing an aberration corrector on the 300 kV STEM indicate a resolution of 0.84 Å. The theoretically achievable probe size in the absence of instabilities is predicted to be 0.5 Å.

Copyright

References

Hide All
1 Pennycook, S. J., Duscher, G., Buczko, R., Kim, M., Browning, N. D. and Pantelides, S. T., in Encyclopedia of Materials: Science and Technology, Elsevier Science Ltd. 2313 (2001).
2 Fan, X., Dickey, E. C., Eklund, P., Williams, K. A., Grigorian, L., Buczko, R. S., Pantelides, S. T. and Pennycook, S. J., Phys. Rev. Lett. 84, 4621 (2000).
3 Buczko, R., Pennycook, S. J., and Pantelides, S. T., Phys. Rev. Lett. 84, 943 (2000).
4 Kim, M., Duscher, G., Browning, N.D., Sohlberg, K., Pantelides, S.T., and Pennycook, S.J., Phys. Rev. Lett. 86, 4056 (2001).
5 James, E. M., Browning, N. D., Nicholls, A. W., Kawasaki, M., Xin, Y., and Stemmer, S., J. Elect. Micr. 47, 561 (1998).
6 Haider, M., Uhlemann, S., Schwan, E., Rose, H., Kabius, B. and Urban, K., Nature 392, 768 (1998).
7 Krivanek, O. L., Dellby, N. and Lupini, A., Ultramicroscopy, 78, 1 (1999).
8 Nellist, P. D. and Pennycook, S. J., Phys. Rev. Lett. 81, 4156 (1998).
9 Pennycook, S. J. and Nellist, P. D. In: Rickerby, D. G., Valdré, U. and Valdré, G. (eds.) Impact of Electron and Scanning Probe Microscopy on Materials Research, Kluwer Academic Publisers, The Netherlands, 161 (1999).
10 Nellist, P. D. and Pennycook, S. J., in Hawkes, P. W. (ed.) Advances in Imaging and Electron Physics, Academic Press 113, 148 (2000).
11 Pennycook, S. J., in Hawkes, P. W. (ed.) Advances in Imaging and Electron Physics, Academic Press 123, 173 (2002).
12 McGibbon, A. J., Pennycook, S. J., and Angelo, J. E., Science 269, 519 (1995).
13 McGibbon, M. M., Browning, N. D., Chisholm, M. F., McGibbon, A. J., and Pennycook, S. J., Ravikumar, V., and Dravid, V. P., Science 266, 102 (1994).
14 Chisholm, M. F. and Pennycook, S. J.. Mater. Res. Soc. Bull. 22, 53 (1997)
15 Browning, N. D., Chisholm, M. F., and Pennycook, S. J., Nature 366, 143 (1993).
16 Duscher, G., Browning, N. D., and Pennycook, S. J., Phys. Stat. Sol. (a ) 166, 327 (1998).
17 Chisholm, M. F., Maiti, A., Pennycook, S. J., and Pantelides, S. T., Phys. Rev. Lett. 81, 132 (1998).
18 Yan, Y., Chisholm, M. F., Duscher, G., Maiti, A., Pennycook, S. J., and Pantelides, S. T., Phys. Rev. Lett. 81, 3675 (1998).
19 Hohenberg, P. and Kohn, W., Phys. Rev. 136, B864 (1964);
Kohn, W. and Sham, L.J., Phys. Rev. 140, A1133 (1954).
20 Perdew, J. P. et. al., Phys. Rev. B 46, 6671 (1992).
21 Vanderbilt, D., Phys. Rev. B41, 7892 (1990).
22 Shiang, J. J., Kadavanich, A. V., Grubbs, R. K. and Alivisatos, A. P., J. Phys. Chem. 99, 17417 (1995).
23 Monkhorst, H. J. and Pack, J. D., Phys. Rev. B13, 5188 (1976).
24 Voyles, P. M., et al., Nature, 416, 826 (2002).
25 Lupini, A. R. and Pennycook, S. J., Ultramicroscopy, in press.
26 Murray, C. B., Norris, D. J., and Bawendi, M. G., J. Am. Chem. Soc. 115, 8706 (1993).
27 Kadavanich, Andreas V., Kippeny, Tadd C., Erwin, Meg M., Pennycook, Stephen J., and Rosenthal, Sandra J., J. Phys. Chem. B105, 361 (2001).
28 Wang, L. W. and Zunger, A., Phys. Rev. B 53, 9579 (1996).
29 Wang, L. G., Pennycook, S. J. and Pantelides, S. T., Phys. Rev. Lett, 89, 075506 (2002).
30 Fan, X., Buczko, R., Puretzky, A. A., Geohegan, D. B., Howe, J. Y., Pantelides, S. T. and Pennycook, S. J., Phys. Rev. Lett, in press (2002).
31 Pennycook, S. J., Rafferty, B. and Nellist, P. D., Microsc. Microanal. 6, 34 (2000).
32 Nellist, P. D., and Pennycook, S. J., Science 274, 413 (1996).

Nanoscale Structure/Property Correlation Through Aberration-Corrected Stem And Theory

  • S.J. Pennycook (a1) (a2), A. R. Lupini (a1), M. Varela (a1), A. Borisevich (a1), M. F. Chisholm (a1), E. Abe (a1) (a3), N. Dellby (a4), O.L. Krivanek (a4), P. D. Nellist (a4), L. G. Wang (a1), R. Buczko (a1) (a2) (a5), X. Fan (a1) and S. T. Pantelides (a1) (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed