Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-27T04:39:07.758Z Has data issue: false hasContentIssue false

Nanoscale Modification of Graphene Transport Properties by Ion Irradiation

Published online by Cambridge University Press:  31 January 2011

Filippo Giannazzo
Affiliation:
filippo.giannazzo@imm.cnr.it, CNR-IMM, Catania, Italy
Sushant Sonde
Affiliation:
sushant.sonde@imm.cnr.it, CNR-IMM, Catania, Italy
Vito Raineri
Affiliation:
vito.raineri@imm.cnr.it, CNR-IMM, Catania, Italy
Emanuele Rimini
Affiliation:
emanuele.rimini@imm.cnr.it, CNR-IMM, Catania, Italy
Get access

Abstract

Single layers of graphene (SLG) mechanically exfoliated from highly oriented pyrolytic graphite and deposited on SiO2/Si were irradiated with C+ ions at different fluences (from 1013 to 1014 cm-2), in order to modify the transport properties in controlled way. Using a method based on scanning probe microscopy, local measurements of the electron mean free path (l) have been carried out both on pristine and ion irradiated SLG. A lateral inhomogeneity of l was found in both cases, with an increasing spread in the distribution of l for larger fluences. Before irradiation, the spread was explained by the inhomogeneous distribution of charged impurities on SLG surface and/or at the interface with SiO2. After irradiation, lattice vacancies cause a local reduction of l in the damaged regions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., Firsov, A. A., Science 306, 666 (2004).Google Scholar
2 Zhang, Y., Tan, Y.-W., Stormer, H. L., Kim, P., Nature 438, 201 (2005).Google Scholar
3 Chen, J.H., Jang, C., Xiao, S., Ishigami, M., Fuhrer, M. S., Nature Nanotechnol, 3, 206 (2008).Google Scholar
4 Jiang, Z., Henriksen, E. A., Tung, L. C., Wang, Y.-J., Schwartz, M. E., Han, M. Y., Kim, P., Stormer, H. L., Phys. Rev. Lett., 98, 197403 (2007).Google Scholar
5 Stauber, T., Peres, N. M. R., Guinea, F., Phys. Rev. B, 76, 205423 (2007).Google Scholar
6 Hwang, E. H., Adam, S., and Sarma, S. Das, Phys. Rev. Lett. 98, 186806 (2007).Google Scholar
7 Pereira, V. M., Santos, J. M. B. Lopes dos, Neto, A. H. Castro, Phys. Rev. B 77, 115109 (2008).Google Scholar
8 Kim, K., Park, H. J., Woo, B.-C., Kim, K. J., Kim, G. T., Yun, W. S., Nano Lett. 8, 3092 (2008).Google Scholar
9 Teweldebrhan, D., Balandin, A. A., Appl. Phys. Lett. 94, 013101 (2009).Google Scholar
10 Tapasztó, L., Dobrik, G., Nemes-Incze, P., Vertesy, G., Lambin, Ph., Biró, L. P., Phys. Rev. B, 78, 233407 (2008).Google Scholar
11 Chen, J.-H., Cullen, W. G., Jang, C., Fuhrer, M. S., Williams, E. D., Phys. Rev. Lett., 102, 236805 (2009).Google Scholar
12 Giannazzo, F., Sonde, S., Raineri, V., and Rimini, E., Appl. Phys. Lett. 95, 263109 (2009).Google Scholar
13 Sonde, S., Giannazzo, F., Raineri, V., Rimini, E., J. Vac. Sci. Technol. B, 27, 868873 (2009).Google Scholar
14 Giannazzo, F., Sonde, S., Raineri, V., and Rimini, E., Nano Lett. 9, 23 (2009).Google Scholar