Skip to main content Accessibility help

Nanoscale Electrochemical Deposition of Metals on FIB Sensitized p-Type Silicon

  • Adrian Spiegel (a1), M. Döbeli (a2) and Patrik Schmuki (a3)


Sub-micrometer copper nanostructures were deposited on p-type silicon (p-Si) by means of a selective electrochemical reaction. Ga+-ions from a focused ion beam (FIB) were used to 'write' damage patterns on p-Si; in a subsequent electrochemical reaction Cu was deposited selectively at these defect sites. So far we have been able to obtain Cu structures with a lateral resolution of 300nm, which is also the limit of the FIB currently used.

The process may offer advantages over traditional lithographic methods for producing nanometer sized metal structure on Si as no masking steps are required. Also, structures with a lateral resolution in the sub- 100nm region seem possible; so far the process has only been limited by the FIB's lateral resolution.



Hide All
[1] Andricacos, P. C., Uzoh, C., Dukovic, J. O., Horkans, J., and Deligianni, H., IBM J. Res. Develop. 42, 567 (1998).
[2] Edelstein, D. C., in Proc. SPIE - Int. Soc. Opt. Eng.: Microelectronic Device Technology II, PV 3506, SPIE Proceedings Series, p. 8 (1998).
[3] Ullmann, R., Will, T., and Kolb, D. M., Chem. Phys. Lett. 209, 238 (1993).
[4] Santinacci, L., Djenizian, T., and Schmuki, P., J. Electrochem. Soc. 148, C640 (2001).
[5] Fuhrmann, H., Candel, A., Döbeli, M., and Mühle, R., J. Vac. Sci. Technol. B 17, 2443 (1999).
[6] Djenizian, T., Santinacci, L., and Schmuki, P., J. Electrochem. Soc. 148, C197 (2001).
[7] Spiegel, A., Erickson, L. E., and Schmuki, P., J. Electrochem. Soc. 147, 2993 (2000).
[8] Schmuki, P., Erickson, L. E., Lockwood, D. J., Fraser, J. W., Champion, G., and Labbe, H. J., Appl. Phys. Lett. 72, 1039 (1998).
[9] Schmuki, P. and Erickson, L. E., Phys. Rev. Lett. 85, 2985 (2000).
[10] Schmuki, P., Erickson, L. E., and Champion, G., J. Electrochem. Soc. 148, C177 (2001).
[11] Gerischer, H., Z. Phys. Chem. 27 (1961).
[12] Morrison, S. R., Electrochemistry at semiconductor and oxidized metal electrodes, (Plenum Press, New York 1980).
[13] Oskam, G., Long, J. G., Natarajan, A., and Searson, P. C., J. Phys. D: Appl. Phys. 31, 1927 (1998).
[14] Ziegler, J. C., Reitzle, A., Bunk, O., Zegenhagen, J., and Kolb, D. M., Electrochim. Acta 45, 4599 (2000).
[15] Schmuki, P., Erickson, L. E., and Lockwood, D. J., Phys. Rev. Lett. 80, 4060 (1998).
[16] Schmuki, P., Erickson, L. E., and Lockwood, D. J., J. Por. Mat. 7, 233 (2000).
[17] Vetterli, D., Döbeli, M., Mühle, R., Nebiker, P. W., and Musil, C. R., Microelectronic Engineering 27, 339 (1995).
[18] Schmidt, W. U., Alkire, R. C., and Gewirth, A. A., J. Electrochem. Soc. 143, 3122 (1996).
[19] Natter, H. and Hempelmann, R., J. Phys. Chem. 100, 19525 (1996).
[20] Suter, T., Peter, T., and Böhni, H., Mater. Sci. Forum 192–194, 25 (1985).
[21] Böhni, H., Suter, T., and Assi, F., Surface and Coatings Technology 130, 80 (2000).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed