Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-19T23:07:36.733Z Has data issue: false hasContentIssue false

Nanoscale Control of Ferroelectric Domain Structure by AFM

Published online by Cambridge University Press:  15 February 2011

A. Gruverman
Affiliation:
National Institute for Research in Inorganic Materials, Tsukuba, Ibaraki 305, Japan
O. Kolosov
Affiliation:
JRCAT-ATP, Tsukuba, Ibaraki 305, Japan
J. Hatano
Affiliation:
Science University of Tokyo, Noda, Chiba 278, Japan
K. Takahashi
Affiliation:
National Institute for Research in Inorganic Materials, Tsukuba, Ibaraki 305, Japan
H. Tokumoto
Affiliation:
JRCAT-NAIR, Tsukuba, Ibaraki 305, Japan
Get access

Abstract

An atomic force microscope is used for visualization and control of domain structure in the ferroelectric crystal guanidinium aluminum sulfate hexahydrate (GASH). Large built-in domains are delineated due to the tip-sample electrostatic interaction by the force microscope operating in friction mode. It is found that an applied voltage of a particular sign created new domains whereas a potential of opposite sign erased these domains. Domains created by an external electric field are visualised in topography mode due to piezoelectric deformation of the crystal. The dynamics of domain lateral growth has been directly observed with nanoscale resolution.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bihan, R. Le, Ferroelectrics, 97, 19 (1989).Google Scholar
2. Hatano, J., Suda, F. and Futama, H., Jap. J. Appl. Phys. 12, 1644 (1973)Google Scholar
3. Shur, V. Ya., Gruverman, A. L. and Rumyantsev, E. L., Ferroelectrics, 111, 123 (1990).Google Scholar
4. Binnig, G., Quate, C. F. and Gerber, Ch., Phys. Rev. Lett. 56, 930 (1986).Google Scholar
5. Holden, A. N., Matthias, B. T., Merz, W. J. and Remeika, J. P., Phys. Rev. 98, 546 (1955).Google Scholar
6. Gruverman, A. L., Kolosov, O. V., Hatano, J., Takahashi, K. and Tokumoto, H., presented at the 41st AVS National Symposium, Denver, CO, 1994 (to be published in J. Vac. Sci. Technol.).Google Scholar
7. Luthi, R., Haefke, H., Meyer, K.-P., Meyer, E., Howald, L. and Guntherodt, H.-J., Surf. Sci. 285, L498 (1993).Google Scholar
8. Szczesniak, L., Meyer, K.-P., Blumtritt, H., Hilczer, B., Bihan, R. Le and Boudjema, E. H., Phys. Stat. Sol. (a), 88, 93 (1985).Google Scholar
9. Zheludev, I. S., Physics of Crystalline Dielectrics, (Plenum Press, New York-London, 1971).Google Scholar
10. Suda, F., Hatano, J. and Futama, H., J. Phys. Soc. Jpn. 45, 916 (1978).Google Scholar
11. Miller, R. C. and Weinreich, G., Phys. Rev. 117, 1460 (1960).Google Scholar