Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-07-02T12:55:54.410Z Has data issue: false hasContentIssue false

Nanoparticle Assembly via Hydrogen-Bonding: IRS, TEM and AFM Characterizations

Published online by Cambridge University Press:  17 March 2011

Li Han
Affiliation:
Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902
Mathew M. Maye
Affiliation:
Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902
Chuan-Jian Zhong
Affiliation:
Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902
Get access

Abstract

This paper reports results of the characterizations of nanoparticle assembly formed via spontaneous core-shell and shell-shell reactivities at thiolate-capped gold nanoparticles. Gold nanoparticles of two different core sizes and thiols with carboxylic acid terminals are exploited as a model system. The reactivities involve covalent Au-thiolate bonding and non-covalent hydrogen-bonding with anisotropic linking character. We employed infrared reflection spectroscopy (IRS), atomic force microscopy (AFM) and transmission electron microscopy (TEM) for the characterizations. While IRS provides structural assessment, TEM and AFM imaging measurements probe the morphological properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. (a) Link, S., El-Sayed, MA., Int. Rev. Phys. Chem. 19, 409 (2000). (b) A. C. Templeton, W. P. Wuelfing and R. W. Murray, Acc. Chem.Res. 33, 27 (2000). and references therein. (c) C. J. Kiely, J. Fink, M. Brust, D. Bethell, and D. J. Schiffrin, Nature 396, 444.(1998)Google Scholar
2. (a) Brust, M., Bethell, D., Kiely, C.J. and Schiffrin, D. J., Langmuir, 14, 5425 (1998). (b) D. Bethell, M. Brust, D. J. Schiffrin and C. J. Kiely, J. Electroanal. Chem. 409, 137 (1996).Google Scholar
3. (a) Musick, M. D., Keating, C. D., Lyon, L. A., Botsko, S. L., Pena, D. J., Holliway, W. D., McEvoy, T. M., Richardson, J. N., and Natan, M. J., Chem. Mater 12, 2869 (2000). (b) K. C. Grabar, K. R. Brown, C. D. Keating, S. J. Stranick, S. L. Tang and M. J. Natan, Anal. Chem. 69, 471 (1997).Google Scholar
4. (a) Zamborini, F. P., Hicks, J. F. and Murray, R. M., J.; Am. Chem. Soc. 122, 4514 (2000). (b) A. N. Shipway, M. Lahav, R. Blonder and I. Willner, Chem. Mater. 11, 13.(1999).Google Scholar
5. Mirkin, C., Letsinger, R. L., Mucic, R. C. and Storhoff, J. J., Nature. 382, 607 (1996).Google Scholar
6. Leibowitz, F.L, Zheng, W. X., Maye, M. M. and Zhong, C. J., Anal. Chem. 71, 5076 (1999).Google Scholar
7. Zheng, W.X., Maye, M.M., Leibowitz, F.L. and Zhong, C.J., Anal. Chem. 72, 2190 (2000).Google Scholar
8. Brust, M., Walker, M., Bethell, D., Schiffrin, D. J. and Whyman, R., J. Chem. Soc., Chem. Commun., 801 (1994).Google Scholar
9. Hoetetler, M. J., Wingate, J.E., Zhong, C. J., Harris, J. E., Vachet, R. W., Clark, M. R., Londono, J. D., Green, S. J., Stokes, J. J., Wignall, G. D., Glish, G. L., Porter, M. D., Evans, N. D. and Murray, R. W., Langmuir 14, 17 (1998).Google Scholar
10. (a) Maye, M. M., Zheng, W. X., Leibowitz, F. L., Ly, N. K. and Zhong, C. J., Langmuir 16, 490 (2000). (b) M. M. Maye and C. J. Zhong, J. Mater. Chem. 10, 1895 (2000).Google Scholar
11. Tao, Y.-T., Lin, W.-L., Hietpas, G. D. and Allara, D. L., J. Phys. Chem. B 101, 9732 (1997).Google Scholar
12. Hayashi, S. and Umemura, J., J. Chem. Phys. 63, 1732 (1975).Google Scholar
13. Whetten, R. L., Khoury, J. T., Alvarez, M. M., Murthy, S., Vezmar, L., Wang, Z. L., Stephens, P. W., Cleveland, C. L., Luedtke, W. D. and Landman, U., Adv. Mater. 8, 428 (1996).Google Scholar