Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-07-02T07:39:30.988Z Has data issue: false hasContentIssue false

Nanometer-Scale Pulsed Laser Modification of the Basal Plane of Graphite Observed with Stm

Published online by Cambridge University Press:  16 February 2011

R. J. Tench
Affiliation:
University of California at Davis/Livermore, Department of Applied Science, Livermore, CA 94550
M. Balooch
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550
W. J. Siekhaus
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550
Get access

Abstract

Scanning tunneling microscopy has been used to document changes in the nanometer-scale morphology of the basal plane of highly oriented pyrolytic graphite after exposure to 7 ns, 1064 nm laser.pulses in air. Surface modification was visible at fluences far below those that produce melting. Damage appears first on step edges and consists of exfoliation of graphite layers and recession of steps through removal of mono- or multilayer patches.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Malvezzi, A.M., Bloembergen, N., and Huang, C.Y., Phys. Rev. Lett. 57 146 (1986).Google Scholar
2. Reitz, D.H., Wang, X., Ahn, H., and Downer, M.C., Phys. Rev. B 40, 11986 (1989).Google Scholar
3. Venkatesan, T., Jacobson, D.C., Gibson, J.M., Elman, B.S., Braunstein, G., Dresselhaus, M.S., and Dresselhaus, G., Phys. Rev. Lett. 53 360 (1984).Google Scholar
4. Steinbeck, J., Braunstein, G., Speck, J., Dresselhaus, M.S., Huang, C.Y., Malvezzi, A.M., and Bloembergen, N. in Beam-Solid Interactions and Transient Processes edited by Thompson, M.O., Picraux, S.T., and Williams, J.S. (Mat. Res. Soc. Proc. 74, Pittsburgh, PA 1987) pp. 263268.Google Scholar
5. Speck, J.S., Steinbeck, J., Braunstein, G., Dresselhaus, M.S., and Venkatesan, T. in Beam-Solid Interactions and Phase Transformations (Mat. Res. Soc. Proc., Pittsburgh, PA 1985) pp. 263268.Google Scholar
6. Arlinghaus, H.F., Calaway, W.F., Young, C.E., Pellin, M.J., Gruin, D.M., and Chase, L.L., J. Appl. Phys. 6, 281 (1989).Google Scholar
7. Matthias, E., Nielsen, H.B., Reif, J., Rosen, A., and Westin, E., J. Vac. Sci. Technol. B 5, 1415 (1987).Google Scholar
8. Chase, L.L. and Smith, L.K., Laser Induced Damage in Optical Materials: 1987, NIST Spec. Publ. 756 (U.S. Dept. of Commerce/NIST, 1988) p 165.Google Scholar
9. Kumazaki, Y., Nakai, Y., and Itoh, N., Surface. Sci. 184, L445 (1987).Google Scholar
10. Wickramasinghe, H.K., Scientific American 261, 98 (1989).Google Scholar
11. Steinbeck, J., Braunstein, G., Dresselhaus, M.S., Venkatesan, T., and Jacobson, D.C., J. Appl. Phys. 58, 4374 (1985).Google Scholar
12. Olander, D.R., Jones, R.H., Schwarz, J.A., and Siekhaus, W.J., J. Chem. Phys. 57, 421 (1972)Google Scholar
13. Simpkins, J.E. and Mioduszewski, P.K., Rev. Sci. Instrum. 59, 276 (1988).Google Scholar