Skip to main content Accessibility help

Nanolayer Reactions in Aluminum-Metal Interfaces

  • E. V. Barrera (a1), M. W. Ruckman (a1) and S. M. Heald (a1)


Surface extended x-ray absorption fine structure (SEXAFS) measurements on the nanometer level were made for AI/M interfaces where M was Cu or Ni. The samples were studied immediately after deposition and after heat treatments. Significant differences in interface reactions were observed depending on deposition direction (Cu on Al or Al on Cu) and the amount of mixing was also related to whether M was Cu or Ni. The SEXAFS measurements revealed that there were no detectable amounts of C or O present. One percent Zn was observed to be in the Al layers. The results obtained from the as-deposited interfaces correlate well with data obtained from buried interfaces of like element combinations.



Hide All
1. Heald, S. M., Chen, H., and Tranquada, J. M., Glancing-angle extended x-ray absorption fine structure and reflectivity studies of interfacial regions, Phys. Rev. B 38, 1016–26 (1988).
2. Chen, H., Studies of Cu-Al interfaces using glancing angle x-ray reflectivity and EXAFS, Ph.D. Dissertation, The City University of New York, 1989.
3. Chen, H. and Heald, S. M., Glancing angle EXAFS studies of interfacial reactions: An application to Cu-Al thin films, Solid State Ionics 32/33, 924–9 (1989).
4. DiMarzio, D., Chen, H., Ruckman, M. W., and Heald, S. M., Photoemission and glancing-angle extended x-ray absorption fine structure studies of vacuum-deposited Al/Cu bilayers, J. Vac. Sci. Technol. A7 (3), 1549–53 (1989).
5. Ruckman, M. W., Jiang, L., and Strongin, Myron, Room temperature reaction between polycrystalline Ni/Al bilayers deposited in ultrahigh vacuum, J. Vac. Sci. Technol. A, in press.
6. Citrin, P. H., An overview of SEXAFS during the past decade, J. de Phys. C8 (12), 437 (1986).
7. Heald, S. M. and Barrera, E. V., X-ray reflectivity and absorption study of Ni/Al reactions: The role of 0 impurities, submitted to March 1990 Meeting of the American Physical Society.

Nanolayer Reactions in Aluminum-Metal Interfaces

  • E. V. Barrera (a1), M. W. Ruckman (a1) and S. M. Heald (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed