Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-24T14:27:21.841Z Has data issue: false hasContentIssue false

Nanoindentation and Magneto-Optical Study of Oxidized Co Thin Films

Published online by Cambridge University Press:  21 March 2011

S. R. Mishra
Affiliation:
Department of Physics, The University of Memphis, Memphis, TN 38152
J. Rho
Affiliation:
Department of Biomedical Engineering, The University of Memphis, TN, 38152
G. Sherfy
Affiliation:
Department of Physics, The University of Memphis, Memphis, TN 38152
M. Roy
Affiliation:
Department of Biomedical Engineering, The University of Memphis, TN, 38152
T. Buckner
Affiliation:
Department of Physics, The University of Memphis, Memphis, TN 38152
Get access

Abstract

We have studied the mechanical and magneto-optical properties of postdeposition oxidized Co thin films. Oxidization process leads to the formation of double-layered structure of cobalt oxide on top of metallic cobalt. The nanoindentation measurements show decrease in hardness and Young's modulus at low annealing temperature and are related to increasing porosity of the film. The magneto-optical Kerr effect (MOKE) reveals dependence of the MOKE spectra on annealing temperature. The increased coercivity of the annealed films has been observed by MOKE and is related to the structure of the film.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Katayaa, T., Suzuki, Y., Awano, H., Nishihara, Y., and Koshizuka, N., Phys. Rev. Lett. 60, 1426 (1988).Google Scholar
2. Sato, K., Ikekame, H., Tosaka, Y., and Shin, S.-C., J. Magn. Magn. Mater. 126, 553 (1993).Google Scholar
3.For review, see Weller, D., Reim, W., and Sporl, K., J. Magn. Magn. Mater. 93, 183 (1991); C. J. Lin, Mater. Res. Sco. Symp. Proc. 150, 15 (1989); D. S. Bloomberg and G. A. N. Connell, in Magneto-optical Recording, Vol. II, Computer Data Storage, eds. C. D. Mee and E. D. Daniel (McGraw Hill, New York, 1989).Google Scholar
4. Rellinghaus, B., Avila, S. Fernandez de, Weller, D., Armelles, G., Beyers, R., and Kellock, A., J. Appl. Physcs. 83, 5621 (1998).Google Scholar
5. Tsui, T. Y., Oliver, W. C., and Pharr, G. M., in Thin Films: Stress and Mechanical Properties VI. Eds. Gerberich, W. W., Gao, H., Sundgren, J.-E., and Baker, S. P. (Mater. Res. Soc. Symp. Proc. 436, Pittsburg, PA, 1997), p.207 Google Scholar
6. Oliver, W. C., Hutchings, R., and Pethica, J. B., in Microindentation Techniques in Materials Science and Engineering, eds. Blau, P. J. and Lawn, B. R. (American Society for Testing and Materials Philadelphia, PA, 1986), p.90 Google Scholar
7. Oliver, W. C. and Pharr, G. M., J. Mater. Res. 7, 1564 (1992).Google Scholar
8. Pharr, G. M. and Oliver, W. C., MRS Bulletin 17, 28 (1992).Google Scholar
9.Digital Instruments, Dimension 3100 Owner's manual.Google Scholar
10. McDermott, M. T., McDermot, C. A., and McCreery, R. L., Anal. Chem. 65, 937 (1993).Google Scholar
11. Li, Y. G., and Lasia, A., J. Appl. Electrochem. 27, 643 (1997).Google Scholar
12. Pictch, N. J., J. Iron Steel Inst., Longon 174, 25 (1953).Google Scholar
13. Tsui, T. Y., Pharr, G. M., Oliver, W. C., Chung, Y. W., Cutiongco, E. C., Bhatia, C. S., White, R. L., Rhoades, R. L., and Corbatkin, S. M., Mater. Res. Soc. Symp. Proc. 356, 767 (1995).Google Scholar
14. Boccaccini, A. R., Ondracek, G., Mazilu, P., and Windelberg, D., J. Mech. Behav. Mater., 4, 119 (1993).Google Scholar
15. Mazilu, P. and Ondracek, G., Thermal Effects in Fracutre of Multiphase Materials, eds. Herman, K. P. and Olesiak, Z. S. (Springer, Berline, 1989) p.255 Google Scholar
16. Korn, D., Morsch, A., Birrnger, R., Arnold, W., and Gleiter, H., J. Phys. (Paris) Colloq. C5, Suppl. 10, 49, 769 (1988).Google Scholar
17. Mayo, M. J., Segel, R. W., Liao, Y. X., and Nix, W. D., J. Mater. Res. 7, 973 (1992).Google Scholar
18. Mayo, M. J., Siegel, R. W., Narayanaswamy, A. and Nix, W. D., J. Mater. Res. 5, 1073 (1990).Google Scholar
19. Jonge, W. J. M. de, Bloemen, P. J. H., and Broeder, F. J. A. den, in Ultrathin Metallic Structures, edited by Heinrich, B. and Bland, J.A.C. (Springer, Berlin, 1993), Vol. I.Google Scholar
20. Broeder, F. J. A. den, Hoving, W. F., and Bloemen, P. J. H., J. Magn. Magn. Mater. 93, 562 (1991).Google Scholar
21. Engel, B. N., England, C. D., Leuwen, R. A. Van, Wiedmann, M. h., and Falco, C. M., Phys. Rev. Lett. 67, 1910 (1991).Google Scholar
22. Bartos, A., Wiarda, D., Inglot, Z., Lieb, K. P., Uhrmacher, M., and Wenzel, T., Int. J. Mod. Phys. B7, 357 (1991).Google Scholar
23. Herzer, G., in Magnetic Hysteresis in Novel Magnetic Materials, Ed. Hadjipanayis, G. C., NATO-ASI Series No. 338 (Vacuumschmelze Gmbh, Hanau, Germany, 1997), pp.711730.Google Scholar