Skip to main content Accessibility help

Nanoimprinted Glass Substrates for Nanoscale Growth Control of Transparent Conducting Oxide Films

  • Yuki Sugimoto (a1), Yasuyuki Akita (a2), Yuta Nakasone (a3), Masahiro Mita (a4), Hideo Oi (a5) and Mamoru Yoshimoto (a6)...


The crystal growth of indium tin oxide (ITO) thin films on nanoimprinted glass substrates was examined by applying pulsed laser deposition. The nanoimprinted glass was fabricated by thermal nanoimprint using a nanostriped NiO thin film mold. The nanopatterned glass had a straight nanowire array with intervals of about 180 nm, and wire height of about 30 nm. The surface morphology of the ITO thin film grown on the nanoimprinted glass accurately reflected the morphology of the glass surface nanopattern. The ITO thin film on the imprinted glass exhibited preferentially (111)-oriented polycrystalline growth, and had 35% lower resistivity in the direction perpendicular to the nanowire array than that of the film grown on the nonpatterned commercial glass.



Hide All
1 Chou, S.Y. Krauss, P.R. and Renstrom, P.J. Appl. Phys. Lett. 67, 3114 (1995).
2 Torres, C.M. Sotomayor, Zankovych, S. Seekamp, J. Kam, A.P. C. Clavijo Cedeño, Hoffmann, T. Ahopelto, J. Reuther, F. Pfeiffer, K. Bleidiessel, G. Gruetzner, G. Maximov, M.V. Heidari, B., Mater. Sci. Eng. C 23, 23 (2003).
3 Trivedi, K. Bhansali, U.S. Gnade, B. Hu, W. Nanotechnology 20, 405204 (2009).
4 Kim, J.G. Sim, Y. Cho, Y. Seo, J.W. Kwon, S. Park, J.W. Choi, H.G. Kim, H. Lee, S. Microelectron. Eng. 86, 2427 (2009).
5 Zhang, Y. Lu, J. Zhou, H. Itoh, T. Maeda, R. J. Microelectromech. Syst. 17, 1020 (2008).
6 Chou, S.Y. and Krauss, P.R. Microelectron. Eng. 35, 237 (1997).
7 Guo, L.J. J. Phys. D: Appl. Phys. 37, 123 (2004).
8 Chou, C.Y. Krauss, P.R. Tenstrom, P.J. Science 272, 85 (1996).
9 Heidari, B. Maximov, I. Sarwe, E.L. Moutelius, L. J. Vac. Sci. Technol. B 17, 2961 (1999).
10 Hirai, Y. Kanakugi, K. Yamaguchi, T. Yao, K. Kitagawa, S. Tnaka, Y., Microelectron. Eng. 67-68, 237 (2003).
11 Morita, T., Watanabe, K. Kometani, R. Kanda, K. Haruyama, Y. Kaito, T. Fujita, J. Ishida, M. Tajima, T. Matsui, S. Jpn. J. Appl. Phys. 42, 3874 (2003).
12 Akiba, S. Hara, W. Watanabe, T. Matsuda, A. Kasahara, M. Yoshimoto, M. Appl. Surf. Sci. 253, 4512 (2007).
13 Akita, Y. Watanabe, T. Hara, W. Matsuda, A. Yoshimoto, M. Jpn. J. Appl. Phys. 46, 342 (2007).
14 Yoshimoto, M. Maeda, T. Ohnishi, T. Koinuma, H. Ishikawa, O. Shinohara, M. Kubo, M. Miura, R. Miyamoto, A. Appl. Phys. Lett. 67, 2615 (1995).
15 Akiba, S. Matsuda, A. Isa, H. Kasahara, M. Sato, S. Watanabe, T. Hara, W. Yoshimoto, M. Nanotechnology 17, 4053 (2006).
16 Ishibashi, S. Higuchi, Y. Ota, Y. Nakamura, K. J. Vac. Sci. Technol. A 8, 1399 (1990).
17 Kim, J.H. Jeon, K.A. Kim, G.H. Lee, S.Y. Appl. Surf. Sci 252, 4834 (2006).
18 Crnogorac, F. Witte, D.J. Xia, Q. Rajendran, B. Pickard, D.S. Liu, Z. Mehta, A. Sharma, S. Yasseri, A. Kamins, T.I. Chou, S.Y. Pease, R.F.W. Microelectron. Eng. 84, 891 (2007)



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed