Skip to main content Accessibility help

Nano-engineering with a focused helium ion beam

  • Diederik J. Maas (a1), Emile W. van der Drift (a2), Emile van Veldhoven (a1), Jeroen Meessen (a3), Maria Rudneva (a2) and Paul F. A. Alkemade (a2)...


Although Helium Ion Microscopy (HIM) was introduced only a few years ago, many new application fields are budding. The connecting factor between these novel applications is the unique interaction of the primary helium ion beam with the sample material at and just below its surface. In particular, the HIM secondary electron (SE) signal stems from an area that is very well localized around the point of incidence of the primary beam. This makes the HIM well-suited for both high-resolution imaging as well as high resolution nanofabrication. Another advantage in nanofabrication is the low ion backscattering fraction, leading to a weak proximity effect. The lack of a quantitative materials analysis mode (like EDX in Scanning Electron Microscopy, SEM) and a relatively low beam current as compared to the SEM and the Gallium Focused Ion Beam are the present drawbacks of the HIM.



Hide All
1. Morgan, J., et al. ., An Introduction to the Helium Ion Microscope . Microscopy Today, 2006. 14(4): p. 24–30.10.1017/S1551929500050240
2. Vladár, A.E., Postek, M.T., and Ming, B., On the Sub-Nanometer Resolution of Scanning Electron and Helium Ion Microscopes . Microscopy Today, 2009. 17: p. 6.10.1017/S1551929500054420
3. Scipioni, L., et al. ., Understanding imaging modes in the helium ion microscope J. Vac. Sci. Technol. B, 2009. 27.
4. Joy, D.C. and Griffin, B.J., Is Microanalysis Possible in the Helium Ion Microscope? Microscopy and Microanalysis, 2011. 17(4): p. 643–649.10.1017/S1431927611000596
5. Livengood, R., et al. ., Subsurface damage from helium ions as a function of dose, beam energy, and dose rate . Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 2009. 27(6): p. 3244–3249.10.1116/1.3237101
6. Tan, S., et al. ., Gas field ion source and liquid metal ion source charged particle material interaction study for semiconductor nanomachining applications . Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 2010. 28(6): p. C6F15–C6F21.
7. Ramachandra, R., Griffin, B., and Joy, D., A model of secondary electron imaging in the helium ion scanning microscope . Ultramicroscopy, 2009. 109(6): p. 748–757.10.1016/j.ultramic.2009.01.013
8. Petrov, Y. and Vyvenko, O., Secondary electron emission spectra and energy selective imaging in helium ion microscope, in SPIE Scanning Microscopies 2011: Advanced Microscopy Technologies for Defense, Homeland Security, Forensic, Life, Environmental, and Industrial Sciences 2011, SPIE.
9. Seah, M.P. and Dench, W.A., Quantitative electron spectroscopy of surfaces: A standard data base for electron inelastic mean free paths in solids . Surface Interface Analysis, 1979. 1: p. 1.10.1002/sia.740010103
10. Postek, M.T., Vladár, A.E., and Ming, B., Recent progress in understanding the imaging and metrology using the helium ion microscope, in Proc. SPIE, Postek, M.T., et al. ., Editors. 2009, SPIE: Monterey, CA, USA. p. 737808–10.
11. Postek, M.T., et al. ., Review of current progress in nanometrology with the helium ion microscope . Meas. Sci. Technol., 2011. 22(2).10.1088/0957-0233/22/2/024004
12. Alkemade, P.F.A., et al. ., Model for nanopillar growth by focused helium ion-beam-induced deposition . Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 2010. 28(6): p. C6F22–C6F25.10.1116/1.3517536
13. Maas, D.J., et al. ., Nanofabrication with a helium ion microscope . SPIE Metrology, Inspection, and Process Control for Microlithography XXIV 2010. 7638: p. 763814.10.1117/12.862438
14. TNO-VLL. Available from:
15. Hill, R. and Rahman, F.H.M., Advances in helium ion microscopy . Nucl. Instr.. and Meth.A, 2010.
16. van Beek, P.J.G., et al. ., Acoustic immunity improvement for the Helium Ion Microscope - Private communication.
17. Stepanova, M.and Dew, S., eds. Nanofabrication: Techniques and Principles. 1st Edition ed. 2011, Springer: Wien. 4223.
18. Orloff, J., Swanson, L.W., and Utlaut, M., Fundamental limits to imaging resolution for focused ion beams J. Vac. Sci. Technol. B, 1996. 14: p. 5.10.1116/1.588663
19. Castaldo, V., et al. ., On the influence of the sputtering in determining the resolution of a scanning ion microscope . J. Vac. Sci. Technol. B, 2009. 27: p. 3196.10.1116/1.3253549
20. IRC. Available from:
21. Postek, M.T., Vladár, A.E., and Ming, B., Breaking the resolution barrier: understanding the science of helium ion beam microscopy., in Frontiers of Characterization and Metrology for Nanoelectronics, Seiler, D.G., et al. ., Editors. 2009, AIP. p. 249–60.
22. Postek, M.T. and Vladár, A.E., Helium ion microscopy and its application to nanotechnology and nanometrology . Scanning, 2008. 30(6): p. 457–462.10.1002/sca.20129
23. Jepson, M., et al. ., Resolution Limits of Secondary Electron Dopant Contrast in Helium Ion and Scanning Electron Microscopy . Microscopy and Microanalysis, 2011. 17(04): p. 637–642.10.1017/S1431927611000365
24. Ohya, K., et al. ., Comparison of secondary electron emission in helium ion microscope with gallium ion and electron microscopes . Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2009. 267(4): p. 584–589.10.1016/j.nimb.2008.11.003
25. Yang, J., et al. ., Rapid and precise scanning helium ion microscope milling of solid-state nanopores for biomolecule detection . Nanotechnology, 2011. 22: p. 285310.10.1088/0957-4484/22/28/285310
26. Scipioni, L., et al. ., Fabrication and initial characterization of ultrahigh aspect ratio vias in gold using the helium ion microscope J. Vac. Sci. Technol. B 2010. 28: p. C6P18.
27. Bell, D.C., et al. ., Precision cutting and patterning of graphene with helium ions . Nanotechnology, 2009. 20.
28. Pickard, D. and Scipioni, L., Graphene Nano-Ribbon Patterning in the Orion Plus ”. Zeiss application note, 2009.
29. Franken, J.H., et al. ., Precise control of domain wall injection and pinning using helium and gallium focused ion beams. Vol. 109. 2011: AIP. 07D504.
30. Orloff, J., Swanson, L., and Utlaut, M., High Resolution Focused Ion Beams: FIB and Its Applications. 2003, New York: Springer Press. 316.10.1007/978-1-4615-0765-9
31. Castaldo, V., High resolution scanning ion microscopy. 2011, Delft University of Technology.
32. Castaldo, V., et al. ., Angular Dependence of the Ion-Induced Secondary Electron Emission for He+ and Ga+ Beams . Microscopy and Microanalysis, 2011. 17(04): p. 624–636.10.1017/S1431927611000225
33. Rudneva, M., et al. ., HIM lamella preparation, in ICM17. 2010: Rio de Janeiro, Brazil.
34. Hor, Y.S., et al. ., Superconductivity in CuxBi2Se3 and its Implications for Pairing in the Undoped Topological Insulator . Physical Review Letters, 2010. 104(5): p. 057001.10.1103/PhysRevLett.104.057001
35. Utke, I., Hoffmann, P., and Melngailis, J., Gas-assisted focused electron beam and ion beam processing and fabrication . Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 2008. 26(4): p. 1197–1276.10.1116/1.2955728
36. Edinger, K., et al. ., Electron-beam-based photomask repair. Vol. 22. 2004: AVS. 2902–2906.
37. Sanford, C., et al. ., Beam induced deposition of platinum using a helium ion microscope . Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, 2009. 27(6): p. 8.10.1116/1.3237095
38. Scipioni, L., et al. ., A Design-of-Experiments Approach to Characterizing Beam-Induced Deposition in the Helium Ion Microscope . Microscopy Today, 2011. 5: p. 7.
39. Boden, S.A., et al. ., Focused helium ion beam milling and deposition . Microelectronic Engineering, 2011. 88(8): p. 2452.10.1016/j.mee.2010.11.041
40. Chen, P., Three-dimensional Nanostructures Fabricated by Ion-Beam-Induced Deposition, in Kavli Institute for Nanoscience. 2010, Delft University of Technology: Delft.
41. Plank, H., et al. ., The influence of beam defocus on volume growth rates for electron beam induced platinum deposition . Nanotechnology, 2008. 19: p. 485302.10.1088/0957-4484/19/48/485302
42. Ebm, C., et al. ., Modeling of precursor coverage in ion-beam induced etching and verification with experiments using XeF2 on SiO2 . Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 2010. 28(5): p. 946–951.10.1116/1.3481139
43. Chen, P., et al. ., Nanopillar growth by focused helium ion-beam-induced deposition . Nanotechnology, 2010. 21: p. 455302.10.1088/0957-4484/21/45/455302
44. Smith, D.A., Joy, D.C., and Rack, P.D., Monte Carlo simulation of focused helium ion beam induced deposition Nanotechnology, 2010. 21 p. 175302.10.1088/0957-4484/21/17/175302
45. Rizvi, S., ed. Handbook of photomask manufacturing technology. 2005, Taylor & Francis: Boca Raton.
46. Friedli, V., et al. ., Mass sensor for in situ monitoring of focused ion and electron beam induced processes . Applied Physics Letters, 2007. 90(5): p. 053106–053106-3.10.1063/1.2435611
47. Lassiter, M.G., Liang, T., and Rack, P.D., Inhibiting Spontaneous Etching of Nanoscale Electron Beam Induced Etching Features: Solutions for Nanoscale Repair of Extreme Ultraviolet Lithography Masks . Journal of Vacuum Science & Technology B, 2008. 26: p. 3.10.1116/1.2917076
48. Melngailis, J., Focused Ion Beam Lithography (review article) . Nuclear Instrum. Methods in Phys. Res., 1993. B80: p. 1271 10.1016/0168-583X(93)90781-Z
49. Yang, J.K.W., et al. ., Understanding of hydrogen silsesquioxane electron resist for sub-5-nm-half-pitch lithography J. Vac. Sci. Technol. B, 2009. 27: p. 6.10.1116/1.3253652
50. Sidorkin, V., Resist and Exposure Processes for Sub-10-nm Electron and Ion Beam Lithography. 2010, Delft University of Technology.
51. van Langen-Suurling, A., et al. ., Nanolithography with a scanning sub-nanometer helium ion beam . Submitted to J. Vac. Sci. Technol. B.
52. Berger, M.J., et al. ., ESTAR, PSTAR, and ASTAR: Computer Programs for Calculating Stopping-Power and Range Tables for Electrons, Protons, and Helium Ions (version 1.2.3). 2005, National Institute of Standards and Technology: Gaithersburg, MD.


Nano-engineering with a focused helium ion beam

  • Diederik J. Maas (a1), Emile W. van der Drift (a2), Emile van Veldhoven (a1), Jeroen Meessen (a3), Maria Rudneva (a2) and Paul F. A. Alkemade (a2)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed