Skip to main content Accessibility help
×
Home

Nanoelectromechanics of Piezoresponse Force Microscopy: Contact Properties, Fields Below the Surface and Polarization Switching

  • S. V. Kalinin (a1), Junsoo Shin (a1) (a2), M. Kachanov (a3), E. Karapetian (a3) and A. P. Baddorf (a1)...

Abstract

To achieve quantitative interpretation of Piezoresponse Force Microscopy (PFM), including resolution limits, tip bias- and strain-induced phenomena and spectroscopy, knowledge of elastic and electrostatic field distributions below the tip is required. The exact closed form solution of the coupled electroelastic problem for piezoelectric indentation is derived and used to obtain the tip-induced electric field and strain distribution in the ferroelectric material. This establishes a complete continuum mechanics description of the PFM imaging mechanism. These solutions are reduced to the point charge/force behavior for large separations from contact, and the applicability limits and charge/force magnitude for these models are established. The implications of these results for ferroelectric polarization switching processes are analyzed.

Copyright

References

Hide All
1. Nanoscale Characterization of Ferroelectric Materials, ed. Alexe, M. and Gruverman, A., to be published.
2. Nanoscale Phenomena in Ferroelectric Thin Films, ed. Seungbum Hong, to be published.
3. Lu, X.M., Schlaphof, F., Grafstroem, S., Loppacher, C., Eng, L.M., Suchaneck, G., and Gerlach, G., Appl. Phys. Lett. 81, 3215 (2002).
4. Roelofs, , Schneller, T., Szot, K., and Waser, R., Appl. Phys. Lett. 81, 5231 (2002).
5. Shin, H., Hong, S., Moon, J., and Jeon, J.U., Ultramicroscopy 91, 103 (2002).
6. Tybell, T., Paruch, P., Giamarchi, T., and Triscone, J.-M., Phys. Rev. Lett. 89, 097601 (2002).
7. Terabe, K., Nakamura, M., Takekawa, S. et. al., Appl. Phys. Lett. 82, 433 (2003).
8. Kalinin, S.V., Bonnell, D.A., Alvarez, T. et. al., Nano Letters 2, 589 (2002).
9. Kholkin, A.L., Shvartsman, V.V., Emelyanov, A. Yu. et. al., Appl. Phys. Lett. 82, 2127 (2002).
10. Abplanalp, M., Fousek, J., and Gunter, P., Phys. Rev. Lett. 86, 5799 (2001).
11. Karapetian, E., Kachanov, M., and Sevostianov, I., Arch. Appl. Mech. 72, 564 (2002).
12. Hanson, M., Journal of Tribology, Trans. of ASME 114, 606, (1992).
13. Karapetian, E., Kachanov, M., and Kalinin, S.V., to be published.
14. Landolt-Bornstein New Series Vol.16a, ed. by K.-H. Hellwege and A.M. Hellwege, Springer-Verlag, 1981.
15. Berlincourt, D., in Ultrasonic Transducer Materials, ed. by Mattiat, O.E. (Plenum Press, New York, 1971).
16. Xu, Y., Ferroelectric Materials and Their Applications (North-Holland, Amsterdam, 1991).
17. Landauer, R., J. Appl. Phys. 28, 227 (1957).
18. Abplanalp, M. Dr, Nat. Sci. thesis, Swiss Federal Institute of Technology, Zurich, 2001.
19. Molotskii, M., Agronin, A., Urenski, P., Shvebelman, M., Rosenman, G., and Rosenwaks, Y., Phys. Rev. Lett. 90, 107601 (2003).
20. Kalinin, S.V., Gruverman, A.L., Baddorf, A.P., Shin, J.S., Karapetian, E., and Kachanov, M., to be published.

Nanoelectromechanics of Piezoresponse Force Microscopy: Contact Properties, Fields Below the Surface and Polarization Switching

  • S. V. Kalinin (a1), Junsoo Shin (a1) (a2), M. Kachanov (a3), E. Karapetian (a3) and A. P. Baddorf (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed