Skip to main content Accessibility help
×
Home

Nanodiamond-based Nanolubricants: Experiment and Modeling

  • D. Brenner (a1), Z. Mahbooba (a1), F. Saberi-Movahed (a1), J. Krim (a1), Z. Liu (a1), M.G. Ivanov (a2), E. Osawa (a3) and O. Shenderova (a4)...

Abstract

Our recent efforts using primarily nanodiamonds as lubricant additives are discussed. For traditional high performance engine oils, our results show a reduction in friction for steel surfaces for both laboratory experiments under controlled conditions and in a pilot study of passenger cars under typical driving conditions. Examination of the surfaces suggests that surface polishing at the sub-micron scale may be responsible for these results. A separate set of experiments using a quartz crystal microbalance to measure dissipation and drag due to friction has shown that when added to water the charge of the nanodiamond acquired from surface functionalization can have a large influence on uptake and friction at the water-metal interface. More importantly, these results suggest the possibility of creating nanodiamonds with controllable frictional drag at the solid-liquid interface through surface processing. Companion simulation results for nanodiamonds in water sliding between diamond surfaces are also presented. Future possibilities for further understanding and tuning the properties of nanodiamonds as lubricant additives through synergistic experiments and modeling are also discussed.

Copyright

References

Hide All
1. Betton, C. L.Lubricants and their environmental impact”, in Chemistry and technology of lubricants, 3rd edition (Mortier, R. M., et al. . editors), pp. 435459, Springer, New York, 2010.
2. Abdelmaksoud, M., Bender, J. W., Krim, J., “Nanotribology of a vapor-phase lubricant: A quartz crystal microbalance study of tricresylphosphate (TCP) uptake on iron and chromium”, Tribology Letters 13 (3): 179186, (2002).
3. Saba, C.S. and Forster, N.H., “Reactions of aromatic phosphate esters with metals and their oxides”, Tribology Letters 12, pp135146 (2002).
4. Forster, H., “Rolling Contact Testing of Vapor Phase Lubricants (III): Surface Analysis”, Tribology Transactions 40, 1 (1999).
5. Abdelmaksoud, M., Bender, J. W., and Krim, J., “Bridging the gap between macro- and nanotribology: A quartz crystal microbalance study of tricresylphosphate uptake on metal and oxide surfaces”, Physical Review Letters 92, (17): Art. # 176101, (2004).
6. Hu, Z.S., Dong, J.X.Study on anti-wear and reducing friction additive of nanometer titanium oxideWear 216, pp. 9296 (1998).
7. Dong, X., Hu, Z.S.A study of the anti-wear and friction-reducing properties of the lubricant additive, nanometer zinc borate”, Tribology International 31, pp. 219223 (1998).
8. Hu, Z.S., Dong, J.X., Chen, G.X., “Study on anti-wear and reducing friction additive of nanometer ferric oxide”, Tribology International 31, pp. 355360 (1998).
9. Qiu, S., Zhou, Z., Dong, J., Chen, G., “Preparation of Ni nanoparticles and evaluation of their tribological performance as potential additives in oils”, J. Tribol. 123, pp. 441443(2001).
10. Dong, J.X., Chen, G., Qiu, S., “Wear and friction behaviour of CaCO3 nanoparticles used as additives in lubricating oils”, Lubr. Sci., 12, pp. 205212 (2000).
11. Li, B., Wang, X., Liu, W., Xue, Q., “Tribochemistry and antiwear mechanism of organic–inorganic nanoparticles as lubricant additives”, Tribology Letters 22, pp. 7984 (2006).
12. Hernández Battez, A., González, R., Viesca, J.L., Fernández, J.E., Díaz Fernández, J.M., Machado, A., Chou, R., Riba, J., “CuO, ZrO2 and ZnO nanoparticles as antiwear additive in oil lubricants”, Wear 265, pp. 422428 (2008)
13. Chou, R., Battez, A.H., Cabello, J.J., Viesca, J.L., Osorio, A., Sagastume, A., “Tribological behavior of polyalphaolefin with the addition of nickel nanoparticles”, Tribology International 43, pp. 23272332 (2010).
14. Ivanov, M.G., Pavlyshko, S.V., Ivanov, DM., Petrov, I, and Shenderova, O., (“Synergistic compositions of colloidal nanodiamond as lubricant-additiveJVST B, 28 pp. 869877 (2010)
15. Ivanov, M., Ivanov, D., (2012) Nanodiamond nanoparticles as additives to lubricants, Ch.8 in Ultrananocrystalline Diamond, 2nd Edition, Eds. Shenderova, O., Gruen, D., Elsevier, UK, ISBN-9781437734652.
16. Yu, Dolmatov V.. (2010). “Detonation Nanodiamonds in Oils and Lubricants”. J. Superhard Mat, 32, pp. 1420. (2010)
17. Liu, Y.H., Wang, X.K., Liu, P.X., Zheng, J.P., Shu, C.Y., Pan, G.S. and Luo, J.B., “Modification on the tribological properties of ceramics lubricated by water using fullerenol as a lubricating additive”, Science China Tech. Sci. 55, pp. 26562661 (2012).
18. Gara, L. and Zou, Q., “Friction and Wear Characteristics of Water-Based ZnO and Al2O3 Nanofluids”, Tribology Transactions 55, pp. 345350 (2012)
19. Wang, , Wang, X., Loui, W. and Hao, J., “Rheological and Tribological Properties of Ionic Liquid-based Nanofluids Containing Functionalized Multi-walled Carbon Nanotubes”, J. Phys. Chem C 114, pp. 87498754 (2010).
20. Nanodiamond – An Emerging Nano-carbon Material,” Ōsawa, E. in Soumiya, S. (Editor), ‘Handbook of Advanced Ceramics: Materials, Applications, Processing and Properties, 2nd Edition,’ Chapter 2.3, p. 89102, Academic Press: Elsevier Inc.: Amsterdam, 2013.
21. Shenderova, O., Koscheev, A., Zaripov, N., Petrov, I., Skryabin, Y., Detkiv, P., Turner, S., Van Tedeloo, G., “Surface Chemistry and Properties of Ozone-Purified Detonation Nanodiamond”, J. Phys. Chem. C 115, pp. 98279837 (2011).
22. Krüger, A.; Ōsawa, E. et al. ., Carbon 43, pp. 17221730 (2005).
23. Schrand, A.M., Hens, S.A.C., Shenderova, O.A., “Nanodiamond Particles: Properties and Perspectives for Bioapplications”, Critical Reviews in Solid State and Materials Sciences 34, pp. 1874 (2009).
24. Ivanov, M. G., Ivanov, D. M., Pavlyshko, S. V., Petrov, I., Vargas, A., McGuire, G., Shenderova, O., (2012) Nanodiamond-Based Nanolubricants, Fullerenes, Nanotubes, and Carbon Nanostructures, 20, pp. 606610.
25. Krim, J. and Widom, A., “Damping of a Crystal Oscillator by an Adsorbed Monolayer and its Relation to Interfacial Viscosity”, Physical Review B 38, pp. 1218412189, (1988)
26. Krim, J., Solina, D. and Chiarello, R., “Nanotribology of a Kr Monolayer: A Quartz Crystal Microbalance Study of Atomic-Scale Friction”, Physical Review Letters 66, pp. 181184, (1991)
27. Hussain, Y., Krim, J., and Grant, C., “OTS adsorption: A dynamic QCM study”, Colloids And Surfaces A-Physicochemical And Engineering Aspects 262, (1-3): pp. 8186, (2005)
28. Rodahl, M., Höök, F., Krozer, A., Brzezinski, P. and Kasemo, B., “Quartz crystal microbalance setup for frequency and Q-factor measurements in gaseous and liquid environments”, Rev. Sci Instrum. 66 pp. 39243930 (1995).
29. Rodahl, M. and Kasemo, B., “A Simple Setup to Simultaneously Measure the Resonant Frequency and Absolute Dissipation Factor of a Quartz Crystal Microbalance”, Rev. Sci. Instruments, 67, pp. 32383241 (1996).
30. Granick, S., Zhu, Y.X. and Lee, H., “Slippery questions about complex fluids flowing past solids”, Nature Materials 2, pp.221227 (2003)
31. Borovsky, B., Krim, J., Asif, Syed, S. A., Wahl, K. J., “Measuring nanomechanical properties of a dynamic contact using an indenter probe and quartz crystal microbalance”, Journal Of Applied Physics 90 (12): pp. 63916396, (2001)
32. Flanigan, C.M., Desai, M., Shull, K.R., “Contact Mechanics Studies with the Quartz Crystal Microbalance.” Langmuir 16 (25), pp. 98259829 (2000).
33. Vittorias, E., Kappl, M., Butt, H.-J., Johannsmann, D., “Studying mechanical microcontacts of fine particles with the quartz crystal microbalancePowder Technology 203 (3), pp. 489502 (2010)
34. Dawson, B.D., Lee, S.M., Krim, J., “Tribo-Induced Melting Transition at a Sliding Asperity Contact”. Phys. Rev. Lett. 103 (20), pp. 205502–205502 (2009).
35. Liu, Z., Corley, S.D., Leininger, D., Shenderova, O., Brenner, D. and Krim, J., “Nanotribological Properties of positively and negatively charged nanodiamonds as additives to solutions”, Royal Society of Chemistry Advances, submitted (2014).
36. Huzayyin, A., Chang, J.H., Lian, K., Dawson, F., “Interaction of water molecule with Au(111) and Au(110) surfaces under the influence of an external electric field”, J. Phys. Chem. C 118, pp. 34593470 (2014).
37. Coffey, T., Abdelmaksoud, M., Krim, J., “A scanning probe and quartz crystal microbalance study of the impact of C-60 on friction at solid-liquid interfaces”, Journal Of Physics-Condensed Matter 13, pp. 49914999, (2001).
38. Haynes, W.M., “Handbook of chemistry and physics”, CRC, 94th edition, (2013-2014).
39. Kedzierski, M.A., “Viscosity and density of CuO nanolubricant”, International Journal of Refrigeration 35, pp. 19972002 (2012).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed