Hostname: page-component-7c8c6479df-27gpq Total loading time: 0 Render date: 2024-03-28T09:43:16.917Z Has data issue: false hasContentIssue false

Nano-Design of Oxide Particles and Electrode Structure for High Sensitivity NO2 Sensor Using WO3 Thick Film

Published online by Cambridge University Press:  01 February 2011

Jun Tamaki*
Affiliation:
Department of Applied Chemistry, Faculty of Science and Engineering, Ritsumeikan University, Kusatsu-shi, Shiga 525–8577, Japan
Get access

Abstract

Novel sensor design for high sensitivity gas sensors has been proposed for the detection of dilute NO2 using WO3 film. First, concerning nano-design of oxide particles, the disk-shaped WO3 particles (300 nm in diameter, 20 nm in thickness) were deposited on Au comb-type microelectrode (line width: 5 μm, distance between lines: 5 μm) to be WO3 thick film sensor. This sensor showed the excellent sensing properties to dilute NO2 at optimized thickness. Second, the nano-gap electrode with various gap-sizes (110–1500 nm) was fabricated by means of MEMS techniques in order to investigate the effect of microelectrode. When the gap size was decreased less than 800 nm, the sensitivity to dilute NO2 increased with decreasing gap size. This was understood from the facts that the contribution of interface resistance between particle and electrode to total sensor resistance was increased and that the sensitivity at electrode-grain interface was much larger than that at grain boundary. It was found that the designs of not only nano-particles but also nano-electrode were important for the fabrication of high sensitivity gas sensor.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Akiyama, M., Tamaki, J., Miura, N., Yamazoe, N., Chem. Lett., 1991, 1611 (1991).Google Scholar
2. Tamaki, J., Zhang, Z., Fujimori, K., Akiyama, M., Harada, T., Miura, N., Yamazoe, N., J. Electrochem. Soc., 141, 2207 (1994).Google Scholar
3. Cantalini, C., Pelino, M., Sun, H. T., Faccio, M., Santucci, S., Lozzi, L., Passacantando, M., Sensors and Actuators B, 35–36, 112 (1996).Google Scholar
4. Cantalini, C., Wlodarski, W., Li, Y., Passacantando, M., Santucci, S., Comini, E., Faglia, G., Sberveglieri, G., Sensors and Actuators B, 64, 182 (2000).Google Scholar
5. Kim, T.-S., Kim, Y.-B., Yoo, K.-S., Sung, G.-S., Jung, H.-J., Sensors and Actuators B, 62, 102 (2000).Google Scholar
6. Depero, L. E., Ferroni, M., Guidi, V., Marca, G., Martinelli, G., Nelli, P., Sangaletti, L., Sberveglieri, G., Sensors and Actuators B, 35–36, 381 (1996).Google Scholar
7. Ferroni, M., Guidi, V., Martinelli, G., and Sberveglieri, G., J. Mater. Res., 12, 793 (1997).Google Scholar
8. Wang, X., Sakai, G., Shimanoe, K., Miura, N., Yamazoe, N., Sensors and Actuators B, 45, 141 (1997).Google Scholar
9. Guidi, V., Boscarino, D., Comini, E., Faglia, G., Ferroni, M., Malagu, C., Martinelli, G., Rigato, V., Sberveglieri, G., Sensors and Actuators B, 65, 264 (2000).Google Scholar
10. Zhao, Y., Feng, Z.-C., Liang, Y., Sensors and Actuators B, 66, 171 (2000).Google Scholar
11. Galatsis, K., Li, Y. X., Wlodarski, W., Comini, E., Sberveglieri, G., Cantalini, C., Santucci, S., and Passacantando, M., Sensors and Actuators B, 83, 276 (2002).Google Scholar
12. Blo, M., Carotta, M. C., Galliera, S., Gherardi, S., Giberti, A., Guidi, V., Malagú, C., Martinelli, G., Sacerdoti, M., Vendemiati, B., and Zanni, A., Sensors and Actuators B, 103, 213 (2004).Google Scholar
13. Choi, Y.-G., Sakai, G., Shimanoe, K., Miura, N., Yamazoe, N., Sensors and Actuators B, 95, 258 (2003).Google Scholar
14. Choi, Y.-G., Sakai, G., Shimanoe, K., and Yamazoe, N., Sensors and Actuators B, 101, 107 (2004).Google Scholar
15. Wang, S.-H., Chou, T.-C., and Liu, C.-C., Sensors and Actuators B, 94, 343 (2003).Google Scholar
16. Guidi, V., Blo, M., Butturi, M. A., Carotta, M. C., Galliera, S., Giberti, A., Malagú, C., Martinelli, G., Piga, M., Sacerdoti, M., and Vendemiati, B., Sensors and Actuators B, 100, 277 (2004).Google Scholar
17. Tamaki, J., Hayashi, A., Yamamoto, Y., Matsuoka, M., Sensors and Actuators B, 95, 111 (2003).Google Scholar
18. Tamaki, J., Hayashi, A., Yamamoto, Y., Digest of Tech. Papers of The 12th International Conference on Solid State Sensors, Actuators, and Microsystems, 1, 524 (2003).Google Scholar
19. Tamaki, J., Hayashi, A., Yamamoto, Y., J. Ceram. Soc. Jpn., 112, S546 (2004).Google Scholar
20. Tamaki, J., Miyaji, A., Makinodan, J., Ogura, S., and Konishi, S., Technical Digest of The 10th International Meeting on Chemical Sensors, p. 140, (2004).Google Scholar
21. Takagi, T., Hayashi, A., Tamaki, J., Yamamoto, Y., Electrochemical Society Proceedings Volume, 2004–08, 177 (2004).Google Scholar