Skip to main content Accessibility help

Nano-Cylinder Structure Studied by X-ray Diffraction

  • Gu Xu (a1), Zhechuan Feng (a2), Zoran Popovic (a3), Jianyi Lin (a4) and Jagadese. J. Vittal (a5)...


The study of nano-cylinder structure has attracted much attention due to the application of multi-wall carbon nanotubes (MWCNTs). While some TEM observations indicate that they are formed by seamless concentric cylinders, other TEM and high pressure X-ray diffraction studies suggest that they look like scrolls of graphite sheets. Although many people now accept the concentric cylinder model, there has been no confirmation reported. On the other hand, this structural difference of MWCNTs plays a crucial role in determining the properties and suitability for future applications. For example, the periodical boundary condition can only be imposed for cylinders, but not for scrolls. To resolve this issue, we employed high-resolution X-ray diffraction to measure detailed profiles of the Bragg peaks for high-purity MWCNTs. We then identified some unusual observations unique to the nano-cylinder structure, followed by the analysis of the structural difference in the Fourier transform between nanotubes formed by scrolls and concentric cylinders. The simulation results are then compared with the experimental data to reveal the structural details.



Hide All
1. Iijima, S., Nature 354, 56 (1991).
2. Ebbesen, T.W. and Ajayan, P.M., Nature 358, 220 (1992).
3. Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., Xu, C., Lee, Y.H., Kim, S.G., Rinzler, A.G., Colbert, D.T., Scuseria, G.E., Tomanek, D., Fischer, J.E. and Smalley, R.E., Science 273, 483 (1996).
4. Ge, M. and Sattler, K., Science 260, 515 (1993).
5. Saito, R., Fujita, M., Dresselhaus, G. and Dresselhaus, M.S., Appl. Phys. Lett. 60, 2204 (1992).
6. Zhang, Z. and Lieber, C.M., Appl. Phys. Lett. 62, 2792 (1993).
7. Wildoer, J.W.G., Venema, L.C., Rinzler, A.G., Smalley, R. E. and Dekker, C., Nature 391, 59 (1998).
8. Odom, T. W., Huang, J.L., Kim, P. and Lieber, C.M., Nature 391, 62 (1998).
9. Hassanien, A., Tokumoto, M., Kumazawa, Y., Kataura, H., Maniwa, Y., Suzuki, S. and Achiba, Y., Appl. Phys. Lett. 73, 3839 (1998).
10. Dravid, V.P., Lin, X., Wang, Y., Wang, X.K., Yee, A., Ketterson, J.B. and Chang, R.P.H., Science 259, 1601 (1993).
11. Zhou, O., Fleming, R.M., Murphy, D.W., Chen, C.H., Haddon, R.C., Ramirez, A.P. and Glarum, S.H., Science 263, 1744 (1994).
12. Hamada, N., Sawada, S. and Oshiyama, A., Phys. Rev. Lett. 68, 1579 (1992).
13. Dresselhaus, M.S., Dresselhaus, G. and Saito, R., Phys. Rev. B. 45, 6234 (1992).
14. Chen, P., Zhang, H.B., Lin, G.D., Hong, Q. and Tsai, K.R., Carbon 35, 1495 (1997).
15. Chen, P., Wu, X., Lin, J.Y., Li, H. and Tan, K.L., Carbon 38, 139 (2000).
16. Warren, B.E., X-ray diffraction, (Addison-Wesley, New York, 1969).
17. Saito, Y., Yoshikawa, T., Bandow, S., Tomita, M. and Hayashi, T., Phys. Rev. B. 48, 1907 (1993).
18. Bandow, S., J. Appl. Phys. 80, 1020 (1996).
19. Reznik, D., Olk, C.H., Neumann, D.A. and Copley, J.R.D., Phys. Rev. B. 52, 116 (1995).
20. Pasqualini, E., Phys. Rev. B. 56, 7751 (1997).
21. Burian, A., Dore, J.C., Fischer, H.E. and Sloan, J., Phys. Rev. B. 59, 1665 (1999).
22. Xu, G., Feng, Z.C., Popovic, Z., Lin, J. and Vittal, J. J., Advanced Materials 13, 264 (2001).
23. Saito, R., Dresselhaus, G., and Dresselhaus, M.S., Physical properties of carbon nanotubes, (Imperial College Press, London, 1998).

Nano-Cylinder Structure Studied by X-ray Diffraction

  • Gu Xu (a1), Zhechuan Feng (a2), Zoran Popovic (a3), Jianyi Lin (a4) and Jagadese. J. Vittal (a5)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed