Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-25T01:37:59.567Z Has data issue: false hasContentIssue false

Nanocrystalline Solid Solutions of Cu/Co and Other Novel Nanomaterials

Published online by Cambridge University Press:  10 February 2011

A. S. Edelstein
Affiliation:
Naval Research Laboratory, Washington, DC 20375
V. G. Harris
Affiliation:
Naval Research Laboratory, Washington, DC 20375
D. Rolison
Affiliation:
Naval Research Laboratory, Washington, DC 20375
J. H. Perepezko
Affiliation:
Dept. of Materials Science, Univ. of Wisconsin, Madison-Madison, WI 53706
D. Smith
Affiliation:
Center for Solid State Science, Arizona State Univ., Tempe, AZ 85287
Get access

Abstract

A brief review will be given of the preparation, synthesis and properties of the Cu/Co system. The special case of the synthesis of nanocrystalline Cu.80Co.20 by precipitation and reduction of hydroxides is discussed in more detail. It was found that the lattice constant of nanocrystalline Cu.80Co.20. determined from x-ray diffraction measurements, approximately fits Vegard's Law and the average nearest neighbor distance from both the Cu and Co atoms, determined from EXAFS measurements, ir shifted from their bulk values. Samples given the minimum heat treatment needed to reduce the hydroxides contained Co-rich regions. Heat treatments cause the Co to segregate preferentially onto the surface of the Cu crystals. The presence of the Co delays the oxidation of the Cu surfaces.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1) The phase diagrams were taken from Binary Alloy Phase Diagrams, 2nd Ed., ed. Massalski, T.B., ASM Int‥ Materials Park, OH, 1990, Vol. 2.Google Scholar
(2) Turchanin, M. A. Russian Metallurgy 1995, 5, 9.Google Scholar
(3) Liu, J.-M. J. of Mater. Sc. 1996, 31, 2807.Google Scholar
(4) Langer, J. S.; Bar-on, M.; Miller, H. D. Phys. Rev. A 1915, 11, 1417.Google Scholar
(5) Busch, R.; Gärtner, F.; Borchers, C.; Hassen, P.; Bormann, R. Acta Mater. 1996, 44, 2567.Google Scholar
(6) Shen, T. D.; Koch, C. C. Acta Mater. 1996, 44, 753.Google Scholar
(7) Nakagawa, Y. Acta Metal. 1958, 6, 704.Google Scholar
(8) Klement, W., J. Trans. Metall. Soc. AIME 1965, 233, 1180.Google Scholar
(9) Elder, S. P.; Munitz, A.; Abbaschian, G. J. Mat. Science Forum 1989, 50, 137.Google Scholar
(10) Kneller, E. F. J. Appl. Phys. 1964, 55, 2210.Google Scholar
(11) Sumiyama, K.; Yoshitake, T.; Nakmura, Y. J. Phys. Soc. of Japan 1984, 53, 3160.Google Scholar
(12) Tanori, J.; Duxin, N.; Petit, C.; Lisiecki, L.; Veillet, P.; Pileni, M. P. Colloid Polym. Sci. 1995, 273, 886.Google Scholar
(13) Gentre, C.; Oehring, M.; Bormann, R. Phys. Rev. B. 1993, 48, 13244.Google Scholar
(14) Blythe, H. J.; Fedosyuk, V. M. J. Magn. Magn. Mater. 1996, 155, 352.Google Scholar
(15) Kneller, E. J. Appl. Phys. 1962, 33, 1353.Google Scholar
(16) Childress, J. L.; Chien, C. L. Phys. Rev. B 1991, 43, 8089.Google Scholar
(17) Berkowitz, A. W.; Mitchell, J. R.; Carey, M. R.; Young, A. P.; Zhang, S.; Spada, F. E.; Parker, F. T.; Hutten, A.; Thomas, G. Phys. Rev. Lett. 1992, 68, 3745.Google Scholar
(18) Xiao, J. Q.; Jiang, J. S.; Chien, C. L. Phys. Rev. Lett. 1992, 68, 3749.Google Scholar
(19) Yavari, A. E.; Desré, P. J.; Benameur, T. Phys. Rev. Lett. 1992, 68, 2235.Google Scholar
(20) Schmid, A. K.; Hamilton, J. C.; Bartelt, N. C.; Hwang, R. Q. Phys. Rev. Lett. 1996, 77, 2977.Google Scholar
(21) Takanash, K.; Park, J.; Sugawara, T.; Hono, K.; Goto, A.; Yasuoka, H.; Fujimori, F. Thin Solid Films 1996, 275, 106.Google Scholar
(22) Sakakima, H.; Irie, Y.; Kawawake, Y.; Satomi, M. J. Magn. Magn. Mater. 1996, 156, 405.Google Scholar
(23) Wang, Z.; Nakamura, Y. J. Magn. Mag. Mat. 1996, 155, 161.Google Scholar
(24) Nagodawithana, K.; Liu, K.; Searson, P. C.; Chien, C. L. In Proceedings of the Symposium on Nanostructured Materials in Electrochemistry; Searson, P. C., Meyer, G. J., Eds.; The Electrochemical Society, Inc.: Pennington, New Jersey, USA, 1995; pp 237.Google Scholar
(25) Correla, A.; Garcia, N.; Massanell, J.; Costa-Krämer, J. L. Appl. Phys. Lett. 1996, 68, 340.Google Scholar
(26) Harris, V. G.; Kaatz, F. H.; Browning, V.; Gillespie, D. J.; Everett, R. K.; Ervin, A. M.; Elam, W. T.; Edelstein, A. S. J. Appl. Phys. 1994, 75, 6610.Google Scholar
(27) Kaatz, F. H.; Harris, V. G.; Kurihara, L.; Rolison, D. R.; Edelstein, A. S. Appl. Phys. Lett. 1995, 67, 3807.Google Scholar
(28) Chow, G. M.; Kurihara, L. K.; Kemner, K. M.; Schoen, P. E.; Elam, W. T.; Ervin, A.; Keller, S.; Zhang, Y. D.; Budnick, J.; Ambrose, T. J. Mater. Res. 1995, 10, 1546.Google Scholar
(29) Michaelsen, C. Phil. Mag. A 1995, 72, 813.Google Scholar
(30) International Tables for X-ray Crystallography; The Kynoch Press: Birmingham, UK, 1968; Vol. 3.Google Scholar
(31) Miguel, J. J. d.; Cebollada, A.; Gallego, J. M.; Miranda, R.; Schneider, C. M.; Schuster, P.; Kirschner, J. J. Magn. Magn. Mat. 1991, 93, 1.Google Scholar
(32) Pescia, D.; Zampieri, G.; Stampanoni, M.; Bona, G. L.; Willis, R. L.; Meir, F. Phys. Rev. Lett. 1987, 58, 933.Google Scholar
(33) Bai, V. S.; Bhagat, S. M.; Kishman, R.; Seddat, M. J. Magn. Magn. Mater. 1995, 147, 97.Google Scholar
(34) Childress, J. L.; Chien, C. L. J. Appl. Phys. 1991, 70, 5885.Google Scholar
(35) Ueda, Y.; Ikeda, S.; Chikazawa, S. Jpn. J. Appl. Phys. 1996, 35, 3414.Google Scholar
(36) Sayers, D. E.; Bunker, B. A. In X-ray Absorption: Basic Principles of EXAFS, SEXAFS, and XANES; Koningsberger, D. C., Prins, R., Eds.; Wiley: New York, 1988.Google Scholar
(37) Report on the International Workshops on Standards and Criteria in XAFS; Hasnain, S. S., Ed.: Howard, Chichest, UK, 1991, pp 751.Google Scholar