Skip to main content Accessibility help

Nanocrystalline Diamond as a Dielectric for SOD Applications

  • Mose Bevilacqua (a1), Niall Tumilty (a1), Aysha Chaudhary (a1), Haitao Ye (a1), James E Butler (a2) and Richard B Jackman (a1)...


Nanocrystalline diamond (NCD) has been grown on oxide coated silicon wafers by microwave plasma assisted chemical vapour deposition using a novel seeding technique followed by optimised growth conditions, and leads to a highly-dense form of this material with grain sizes around 100nm for films approximately 1.5 microns thick. The electrical properties of these films have been investigated using Impedance Spectroscopy, which enables the contributions from sources characterised by differing capacitances, such as grain boundaries and grain interiors, to be isolated. After an initial acid clean the electrical properties of the film are not stable, and both grain boundaries and grains themselves contribute to the frequency dependant impedance values recorded. However, following mild oxidation grain boundary conduction is completely removed and the films become highly resistive (>1013 ohm/sq). This is most unusual, as conduction through NCD material is more normally dominated by grain boundary effects. Interestingly, the AC properties of these films are also excellent with a dielectric loss value (tan δ) as low as 0.002 for frequencies up to 10MHz. The dielectric properties of these NCD films are therefore as good as high quality free-standing (large grain) polycrystalline diamond films, and not too dissimilar to single crystal diamond, and are therefore ideally suited to future ‘silicon-on-diamond’ applications.



Hide All
1. “Diamond Electronics–Fundamentals to Applications” MRS Symposium Proceedings, Vol. 956 (2007) Eds. Bergonzo, P, Gat, R, Jackman, RB and Nebel, CE
2. Edholm, B, Söderbärg, A, Olsson, J and Johansson, E Jpn. J. Appl. Phys., 34, 4706 (1995)10.1143/JJAP.34.4706
3. Lang, AR, Makepeace, APW, Alexander, WB, McCormick, T, Pehrsson, PE and Butler, JE J. Cryst. Growth 200, 446 (1999)
4. Ayres, VM, McCormick, T, Alexander, WB, Vestyck, DJ, Butler, JE and Spiberg, P Diam. & Relat. Mater., 7, 789 (1998)
5. Zhou, D., Krauss, A. R., Qin, L. C., McCauley, T. G., Gruen, D. M., Corrigan, T. D., Chang, R. P. H. and Gnaser, H. J. Appl. Phys., 82, 4546 (1997)
6. Profitt, SS, Probert, SJ, Whitfield, MD, Foord, JS and Jackman, RB Diam. & Relat. Mat., 8, 768 (1999)
7. Ye, H, Sun, CQ, Huang, H and Hing, P Appl. Phys. Letts., 78, 1826 (2001)
8. Williams, OA and Nesladek, M Phys. Stat. Sol., A203, 3375 (2006)
9. Jiao, S, Sumant, A, MA, MA Kirk, Gruen, DM, Krauss, AR and Auciello, O J. Appl. Phys., 90, 118 (2001)
10. Philip, J, Hess, P, Feygelson, T, Butler, JE, Chattopadhyay, S, Chen, KH and Chen, LC J. Appl. Phys., 93, 2164 (2003)10.1063/1.1537465
11. Wang, J., Butler, J.E., Feygelson, T., and Nguyen, C. T.-C., 17th Int. IEEE Micro Electro Mechanical Systems Conf., Maastricht, The Netherlands, Jan. 25-29, 2004, pp.641644
12. Baldwin, J. W., Zalalutdinov, M. K., Feygelson, T. et al. Diamond and Related Materials 15, 2061 (2006)
13. Ye, H, Hing, P and Jackman, RB J. Appl. Phys., 94, 7878 (2003)
14. Baral, B, Chan, SSM and Jackman, RB J. Vac. Sci. & Technol., A14, 2303 (1996)
15. Ye, H, Gaudin, O, Jackman, RB, Muret, P and Gheerart, E Phys. Stat. Sol. A199, 92 (2003)
16. Ye, H, Gaudin, O and Jackman, RB J. Mat. Sci. & Tech., 21, 879 (2005)
17. Ye, H, Yan, HX and Jackman, RB Semi. Sci. & Technol., 20, 296 (2005)
18. S Curat, S, Ye, H, Gaudin, O, Koizumi, S and Jackman, RB J. Appl. Phys., 98, 073701 (2005)10.1063/1.2058183
19. Conte, G, Rossi, MC, Spaziani, F and Arcangeli, R Diam. & Relat. Mat., 14, 570 (2005)10.1016/j.diamond.2005.01.011
20. Macdonald, J. R., “Impedance Spectroscopy” (Wiley, New York, 1987), Chapter 4.
21. Hench, L. L. and West, J. K., Principles of Electronic Ceramics (Wiley, New York, 1989), Chapter 5.
22. Looi, HJ, Pang, LYS, Molley, AB, Jones, F, Foord, JS and Jackman, RB Diam. & Relat. Mat., 7, 550 (1998)
23. Matel, BF, Stammler, M, Ristein, J and Ley, L Diam. & Relat. Mater., 10, 429 (2001)10.1016/S0925-9635(00)00601-4
24. Chua, LH, Jackman, RB, Foord, JS, Chalker, PR, Johnston, C, Romani, S J. Vac. Sci. & Technol., A12, 3033 (1994)
25. Nakamura, J and Ito, T Appl. Surf. Sci., 244, 301 (2005)
26. Maclear, RD, Butler, JE, Connell, SH, Doyle, BP, Machi, IZ, Rebuli, DB, Sellschop, JPF and Sideras-Haddad, E Diam. & Relat. Mater., 8, 1615 (1999)10.1016/S0925-9635(99)00061-8
27. Brandon, JR, Coe, SE, Sussmann, RS, Sakamoto, K, Sporl, R, Heidinger, R and Hanks, S Fus. Eng. & Des., 53, 553 (2001)10.1016/S0920-3796(00)00533-0
28. Ibarra, A, Gonzalez, M, Vila, R and Molla, J Diam. & Relat. Mater., 6, 856 (1997)
29. Lu, FX, Zhang, HD, Tong, YM, Yang, JX, Li, CM, Chen, GC and Tang, WZ Diam. & Relat. Mater., 13, 1714 (2004)10.1016/j.diamond.2004.02.011
30. Heidger, S, Frie-Carr, S, Jordan, B and Wu, R IEEE 247 (1998)


Nanocrystalline Diamond as a Dielectric for SOD Applications

  • Mose Bevilacqua (a1), Niall Tumilty (a1), Aysha Chaudhary (a1), Haitao Ye (a1), James E Butler (a2) and Richard B Jackman (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed