Skip to main content Accessibility help

Nanocomposites: Retrospecr and Prospect

  • Rustum Roy (a1)


In this paper we make clear distinctions from the terms nanophase, nanocrystalline and deal only with nanocomposites defined as an interacting mixture of two phases, one of which is in the nanometer size range in at least one dimension. The author's origins of development of the idea that nanocomposites are a virtually infinite class of new materials are described.

Then we refer to the results of our extensive studies of nanocomposites derived by solution-solgel techniques to illustrate the properties of such materials in the area of chemical and thermal reactivity.

Finally it is pointed out that in the last few years nanocomposite materials have become a major part of new materials synthesis all over the world for applications ranging from mechanical to optical, to magnetic to dielectric.



Hide All
1. , Roy, , Rustum, “Aids in Hydrothermal Experimentation: II. Methods of Making Mixtures for Both ‘Dry’ and ‘Wet’ Phase Equilibrium Studies,” J. Am. Ceram. Soc. 49,145146 (1956).
2. (a) Roy, R. A. and Roy, Rustum, “Diphasic Xerogels. I. Ceramic-metal Composites,” Mat. Res. Bull. 19, 169177 (1984). (b) D. W. Hoffman, R. Roy and S. Komarneni, “Diphasic Xerogels, A New Class of Materials: Phases in the System Al2O3-SiO2,” J. Am. Ceram. Soc. 67,468-470 (1984).
3. Roy, Rustum, “Ceramics by the Solution-Sol-Gel Route,” Science 238,16641669 (December 1987).
4. Komarneni, S., “Nanocomposites,” J. Mat. Chem. 2,1219 (1992).
5. McCarthy, G. J., Roy, R. and McKay, J. M., “Preliminary Study of Low-Temperature ‘Glass’ Fabrication from Noncrystalline Silicas,” J. Am. Ceram. Soc. 54, 637638 (1971).
6. Gleiter, H., Mat. Sci. & Engr. 52, 92 (1982); review in Nanostructural Mat. 1, 1-19 (1992).
7. Newnham, R. E., Skinner, D. P. and Cross, L. E., “Connectivity and Piezoelectric Composites,” Mat. Res. Bull. 13, 525 (1978).
8. Hill, V. G., Roy, R. and Osborn, E. F., “The System Alumina-Gallia-Water,” J. Am. Ceram. Soc. 35, 135142 (1952).
9. Ervin, G. and Osborn, E. F., “The System Al2O3-H2O,” J. Geol. 59,383 (1951).
10. Roy, R., Roy, D. M. and Osborn, E. F., “Compositional and Stability Relationships Among the Lithium Aluminosilicates: Eucryptite, Spodumene and Petalite,” J. Am. Ceram. Soc. 33, 152159 (1950).
11. Roy, R., Komarneni, S. and Roy, D. M., “Multi-phasic Ceramic Composites Made by Sol-Gel Technique,” Better Ceramics Through Chemistry, Brinker, C. J., Clark, D. E. and Ulrich, D. R. (eds.), Elsevier Science Publishing Co., Inc., NY, Proc., Mat. Res. Soc. Symp. 32, 347359 (1984).
12. Suwa, Y., Roy, R. and Komarneni, S., “Lowering Crystallization Tempeatures by Seeding in Structurally Diphasic Al2O3-MgO Xerogels,” J. Am. Ceram. Soc. 68 (9), C238 (1985).
13. Roy, R., Suwa, Y. and Komarneni, S., “Nucleation and Epitaxial Growth in Diphasic (Crystalline + Amorphous) Gels,” Science of Ceramic Chemical Processing, Hench, L. L. and Ulrich, D. R. (eds.), John Wiley & Sons, NY, Chapter 27, pp. 247258 (1986).
14. Lehoczky, S. L., “Retardation of Dislocation Generation in Thin-Layer Metal Laminates,” Phys. Rev. Lett. 41, 1814 (1978).
15. Koehler, J. S., “Attempts to Design a Strong Solid,” Phys. Rev. B (1970).
16. Newnham, R. E. and Trolier-McKinstry, Susan, “Structure Property Relations in Ferroic Nanocomposites,” Cer. Trans. 8, 235 (1990).
17. Cross, L. E., “Relaxor Ferroelectrics,” Ferroelectrics 76, 241 (1987).
18. Proc. of 7th Seminar “Nano-hybridization and Creation of New Functions,” February 7-10, Oiso, Japan (1989).
19. Roy, R. A., Messier, R. and Cowley, J. M., “Fine Structure of Gold Particles in Thin Films Prepared by metal-Insulator Co-Sputtering,” Thin Solid Films 79 (3), 207215 (1981).
20. Roy, R. A., Messier, R. and Krishnaswamy, S. V., “Preparation and Properties of Rf Sputtered Polymer-Metal Thin Films,” Thin Solid Films 109, 27 (1983).
21. Hoffman, D., Komarneni, S. and Roy, R., “Preparation of a Diphasic Photosensitive Xerogel,” J. Mat. Sci. Lett. 3, 439442 (1984).
22. Yarbrough, W. A. et al. , Ceramic Bulletin 66, 692 (1987).
23. Suwa, Y., Komarneni, S. and Roy, R., “Solid-State Epitaxy Demonstrated by Thermal Reactions of Structurally Diphasic Xerogels: The System Al2O3 ,” J. Mat. Sci. Lett. 5, 2124 (1986).
24. Hoffman, D., Roy, R. and Komarneni, S., “Diphasic Ceramic Composites via a Sol-Gel Method,” Mat. Lett. 2 (3), 245247 (1984).
25. Roy, R., Komarneni, S. and Yarbrought, W., “Some New Advances with SSG-Derived Nanocomposites, Ultrastructure Processing of Advanced Ceramics, MacKenzie, John and Ulrich, D. (eds.), Wiley Interscience, Chapter 42, pp. 571588 (1988).
26. Hoffman, D. W., Komarneni, S. and Roy, R., J. Mat. Sci. Lett. 3,439 (1984).
27. Kazakos, A. M., Komarneni, S. and Roy, R., J. Mat. Res. 5, 1095 (1990).
28. Vilmin, G., Komarneni, S. and Roy, R., J. Mat. Sci. 22, 3556 (1987).
29. Rase, D. E. and Roy, R., “Phase Equilibria in the System BaO-TiO2 ,” J. Am. Ceram. Soc. 38, 102113 (1955).
30. Vilmin, G., Komarneni, S. and Roy, R., J. Mat. Res. 2,489 (1987).
31. Selvaraj, U., Liu, C. L., Komarneni, S. and Roy, R., “Epitaxial Crystalliation of Seeded Albite Glass,” J. Am. Ceram. Sco. 74 (6), 13781381 (1991).
32. Selvaraj, U., Komarneni, S. and Roy, R., “Seeding Effects on Crystallization Temperatures of Cordierite Glass Powder,” J. Mat. Sci. (submitted, 1990).
33. Yarbrough, W. and Roy, R., J. Mat. Res. 2,494 (1987).
34. Roy, R., “The Preparation and Properties of Synthetic Clay Minerals,” Colloques Intl. du Centre National de la Recherche Scientifique Paris 105, 8399 (1961).
35. Bates, T. F., Sand, L. B. and Mink, J., “Tubular Cyrstals of Chrysotile Asbestos,” Science 111, 512 (1950).
36. Roy, D. M. and Roy, R., “An Experimental Study of the Formationand Propertoes of Synthetic Serpentines and Related Layer Silicate Minerals,” Am. Mineralogist 39, 957975 (1954).
37. Malla, P. and Komarneni, S., Sci. Geol. Mem. 86,59 (1990).
38. Selvaraj, U., Parasadaro, A. V., Komarneni, S. and Roy, R., J. Mat. Res. (in press, 1992).
39. Selvaraj, U., Prasadarao, A. V., Komarneni, S. and Roy, R., J. Am. Ceram. Soc. 75, 1167 (1992).
40. Birchall, D., this symposium.
41. Weber, J. N., White, E. W. and Liebiedzik, J., “New Porous Biomaterials by Replication of Echinoderm Skeletal Microstructure,” Nature 233, 337339 (1971).
42. White, R. A., Weber, J. N. and White, E. W., “Replamineform: A New Process for Preparing Ceramics, Metal, and Polymer Prosthetic Materials,” Science 176, 922924 (1972).
43. White, E. W., Weber, J. N., Roy, D. M., Owen, E. L., Chiroff, R. T. and White, R. A., “Replamineform Porous Biomaterials for Hard Tissue Implant Applications,” J. Biomed. Mat. Res. Symp. 6, 2327 (1975).
44. Newnham, R. E., “Composite Electroceramics,” J. Mater. Educ. 7 (4), 601 (1985).
45. Newnham, R. E. and Ruschau, G., “Smart Electroceramnics,” J. Am. Ceram. Soc. 74,463 (1991).
46. Pach, L., Hrabe, A., S. Komarneni and Roy, R., “Controlled Crystallization of Vaterite from Viscous Solutions of Organic Colloids,” J. Mat. Res. 5 (12), 2928 (December 1990).
47. Wood: Its Structure and Properties, Wangaard, F. F. (ed.), EMMSE Project, The Pennsylvania State University (1981).
48. Niihara, K. and Nakahira, A., Ceramics: Toward the 21st Century, Soga, N. and Kato, A. (eds.), Ceram. Soc. Jpn, Tokyo, pp. 404417 (1991).
49. (a) Vaughan, D. W. E. Lussier, R. J. and Magee, J. S., U.S. Patent 4176090 (1974). (b) S. Yamanaka, Am. Ceram. Soc. Bull, 70, 1056 (1991).
50. Endo, T., Sato, T. and Shimada, M., “Fluorescence Properties of the Dye-Intercalated Smectite,” J. Phys. Chem. Sol. 47 (8), 14231428 (1988).
51. Tsuya, N., Saito, Y., Nakamura, H., Hayano, S., Jurugohri, A., Ohta, K., Wakui, Y. and Tokushima, T., J. Mag. Mag. Mater. 54–57, 1681 (1986).
52. Roy, R., “New Materials: Fountainhead for New Technologies and New Science,” Intl. Science Lecture Series, The U.S. National Academy of Sciences and the Office of Naval Research (1991/1992).

Nanocomposites: Retrospecr and Prospect

  • Rustum Roy (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed