Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-25T11:32:38.241Z Has data issue: false hasContentIssue false

Nanocomposites: Retrospecr and Prospect

Published online by Cambridge University Press:  25 February 2011

Rustum Roy*
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, PA 16802
Get access

Abstract

In this paper we make clear distinctions from the terms nanophase, nanocrystalline and deal only with nanocomposites defined as an interacting mixture of two phases, one of which is in the nanometer size range in at least one dimension. The author's origins of development of the idea that nanocomposites are a virtually infinite class of new materials are described.

Then we refer to the results of our extensive studies of nanocomposites derived by solution-solgel techniques to illustrate the properties of such materials in the area of chemical and thermal reactivity.

Finally it is pointed out that in the last few years nanocomposite materials have become a major part of new materials synthesis all over the world for applications ranging from mechanical to optical, to magnetic to dielectric.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. , Roy, , Rustum, “Aids in Hydrothermal Experimentation: II. Methods of Making Mixtures for Both ‘Dry’ and ‘Wet’ Phase Equilibrium Studies,” J. Am. Ceram. Soc. 49,145146 (1956).Google Scholar
2. (a) Roy, R. A. and Roy, Rustum, “Diphasic Xerogels. I. Ceramic-metal Composites,” Mat. Res. Bull. 19, 169177 (1984). (b) D. W. Hoffman, R. Roy and S. Komarneni, “Diphasic Xerogels, A New Class of Materials: Phases in the System Al2O3-SiO2,” J. Am. Ceram. Soc. 67,468-470 (1984).Google Scholar
3. Roy, Rustum, “Ceramics by the Solution-Sol-Gel Route,” Science 238,16641669 (December 1987).Google Scholar
4. Komarneni, S., “Nanocomposites,” J. Mat. Chem. 2,1219 (1992).Google Scholar
5. McCarthy, G. J., Roy, R. and McKay, J. M., “Preliminary Study of Low-Temperature ‘Glass’ Fabrication from Noncrystalline Silicas,” J. Am. Ceram. Soc. 54, 637638 (1971).Google Scholar
6. Gleiter, H., Mat. Sci. & Engr. 52, 92 (1982); review in Nanostructural Mat. 1, 1-19 (1992).Google Scholar
7. Newnham, R. E., Skinner, D. P. and Cross, L. E., “Connectivity and Piezoelectric Composites,” Mat. Res. Bull. 13, 525 (1978).Google Scholar
8. Hill, V. G., Roy, R. and Osborn, E. F., “The System Alumina-Gallia-Water,” J. Am. Ceram. Soc. 35, 135142 (1952).Google Scholar
9. Ervin, G. and Osborn, E. F., “The System Al2O3-H2O,” J. Geol. 59,383 (1951).Google Scholar
10. Roy, R., Roy, D. M. and Osborn, E. F., “Compositional and Stability Relationships Among the Lithium Aluminosilicates: Eucryptite, Spodumene and Petalite,” J. Am. Ceram. Soc. 33, 152159 (1950).Google Scholar
11. Roy, R., Komarneni, S. and Roy, D. M., “Multi-phasic Ceramic Composites Made by Sol-Gel Technique,” Better Ceramics Through Chemistry, Brinker, C. J., Clark, D. E. and Ulrich, D. R. (eds.), Elsevier Science Publishing Co., Inc., NY, Proc., Mat. Res. Soc. Symp. 32, 347359 (1984).Google Scholar
12. Suwa, Y., Roy, R. and Komarneni, S., “Lowering Crystallization Tempeatures by Seeding in Structurally Diphasic Al2O3-MgO Xerogels,” J. Am. Ceram. Soc. 68 (9), C238 (1985).Google Scholar
13. Roy, R., Suwa, Y. and Komarneni, S., “Nucleation and Epitaxial Growth in Diphasic (Crystalline + Amorphous) Gels,” Science of Ceramic Chemical Processing, Hench, L. L. and Ulrich, D. R. (eds.), John Wiley & Sons, NY, Chapter 27, pp. 247258 (1986).Google Scholar
14. Lehoczky, S. L., “Retardation of Dislocation Generation in Thin-Layer Metal Laminates,” Phys. Rev. Lett. 41, 1814 (1978).Google Scholar
15. Koehler, J. S., “Attempts to Design a Strong Solid,” Phys. Rev. B (1970).Google Scholar
16. Newnham, R. E. and Trolier-McKinstry, Susan, “Structure Property Relations in Ferroic Nanocomposites,” Cer. Trans. 8, 235 (1990).Google Scholar
17. Cross, L. E., “Relaxor Ferroelectrics,” Ferroelectrics 76, 241 (1987).Google Scholar
18. Proc. of 7th Seminar “Nano-hybridization and Creation of New Functions,” February 7-10, Oiso, Japan (1989).Google Scholar
19. Roy, R. A., Messier, R. and Cowley, J. M., “Fine Structure of Gold Particles in Thin Films Prepared by metal-Insulator Co-Sputtering,” Thin Solid Films 79 (3), 207215 (1981).Google Scholar
20. Roy, R. A., Messier, R. and Krishnaswamy, S. V., “Preparation and Properties of Rf Sputtered Polymer-Metal Thin Films,” Thin Solid Films 109, 27 (1983).Google Scholar
21. Hoffman, D., Komarneni, S. and Roy, R., “Preparation of a Diphasic Photosensitive Xerogel,” J. Mat. Sci. Lett. 3, 439442 (1984).Google Scholar
22. Yarbrough, W. A. et al. , Ceramic Bulletin 66, 692 (1987).Google Scholar
23. Suwa, Y., Komarneni, S. and Roy, R., “Solid-State Epitaxy Demonstrated by Thermal Reactions of Structurally Diphasic Xerogels: The System Al2O3 ,” J. Mat. Sci. Lett. 5, 2124 (1986).Google Scholar
24. Hoffman, D., Roy, R. and Komarneni, S., “Diphasic Ceramic Composites via a Sol-Gel Method,” Mat. Lett. 2 (3), 245247 (1984).Google Scholar
25. Roy, R., Komarneni, S. and Yarbrought, W., “Some New Advances with SSG-Derived Nanocomposites, Ultrastructure Processing of Advanced Ceramics, MacKenzie, John and Ulrich, D. (eds.), Wiley Interscience, Chapter 42, pp. 571588 (1988).Google Scholar
26. Hoffman, D. W., Komarneni, S. and Roy, R., J. Mat. Sci. Lett. 3,439 (1984).Google Scholar
27. Kazakos, A. M., Komarneni, S. and Roy, R., J. Mat. Res. 5, 1095 (1990).Google Scholar
28. Vilmin, G., Komarneni, S. and Roy, R., J. Mat. Sci. 22, 3556 (1987).Google Scholar
29. Rase, D. E. and Roy, R., “Phase Equilibria in the System BaO-TiO2 ,” J. Am. Ceram. Soc. 38, 102113 (1955).Google Scholar
30. Vilmin, G., Komarneni, S. and Roy, R., J. Mat. Res. 2,489 (1987).Google Scholar
31. Selvaraj, U., Liu, C. L., Komarneni, S. and Roy, R., “Epitaxial Crystalliation of Seeded Albite Glass,” J. Am. Ceram. Sco. 74 (6), 13781381 (1991).Google Scholar
32. Selvaraj, U., Komarneni, S. and Roy, R., “Seeding Effects on Crystallization Temperatures of Cordierite Glass Powder,” J. Mat. Sci. (submitted, 1990).Google Scholar
33. Yarbrough, W. and Roy, R., J. Mat. Res. 2,494 (1987).Google Scholar
34. Roy, R., “The Preparation and Properties of Synthetic Clay Minerals,” Colloques Intl. du Centre National de la Recherche Scientifique Paris 105, 8399 (1961).Google Scholar
35. Bates, T. F., Sand, L. B. and Mink, J., “Tubular Cyrstals of Chrysotile Asbestos,” Science 111, 512 (1950).Google Scholar
36. Roy, D. M. and Roy, R., “An Experimental Study of the Formationand Propertoes of Synthetic Serpentines and Related Layer Silicate Minerals,” Am. Mineralogist 39, 957975 (1954).Google Scholar
37. Malla, P. and Komarneni, S., Sci. Geol. Mem. 86,59 (1990).Google Scholar
38. Selvaraj, U., Parasadaro, A. V., Komarneni, S. and Roy, R., J. Mat. Res. (in press, 1992).Google Scholar
39. Selvaraj, U., Prasadarao, A. V., Komarneni, S. and Roy, R., J. Am. Ceram. Soc. 75, 1167 (1992).Google Scholar
40. Birchall, D., this symposium.Google Scholar
41. Weber, J. N., White, E. W. and Liebiedzik, J., “New Porous Biomaterials by Replication of Echinoderm Skeletal Microstructure,” Nature 233, 337339 (1971).Google Scholar
42. White, R. A., Weber, J. N. and White, E. W., “Replamineform: A New Process for Preparing Ceramics, Metal, and Polymer Prosthetic Materials,” Science 176, 922924 (1972).Google Scholar
43. White, E. W., Weber, J. N., Roy, D. M., Owen, E. L., Chiroff, R. T. and White, R. A., “Replamineform Porous Biomaterials for Hard Tissue Implant Applications,” J. Biomed. Mat. Res. Symp. 6, 2327 (1975).Google Scholar
44. Newnham, R. E., “Composite Electroceramics,” J. Mater. Educ. 7 (4), 601 (1985).Google Scholar
45. Newnham, R. E. and Ruschau, G., “Smart Electroceramnics,” J. Am. Ceram. Soc. 74,463 (1991).Google Scholar
46. Pach, L., Hrabe, A., S. Komarneni and Roy, R., “Controlled Crystallization of Vaterite from Viscous Solutions of Organic Colloids,” J. Mat. Res. 5 (12), 2928 (December 1990).Google Scholar
47. Wood: Its Structure and Properties, Wangaard, F. F. (ed.), EMMSE Project, The Pennsylvania State University (1981).Google Scholar
48. Niihara, K. and Nakahira, A., Ceramics: Toward the 21st Century, Soga, N. and Kato, A. (eds.), Ceram. Soc. Jpn, Tokyo, pp. 404417 (1991).Google Scholar
49. (a) Vaughan, D. W. E. Lussier, R. J. and Magee, J. S., U.S. Patent 4176090 (1974). (b) S. Yamanaka, Am. Ceram. Soc. Bull, 70, 1056 (1991).Google Scholar
50. Endo, T., Sato, T. and Shimada, M., “Fluorescence Properties of the Dye-Intercalated Smectite,” J. Phys. Chem. Sol. 47 (8), 14231428 (1988).Google Scholar
51. Tsuya, N., Saito, Y., Nakamura, H., Hayano, S., Jurugohri, A., Ohta, K., Wakui, Y. and Tokushima, T., J. Mag. Mag. Mater. 54–57, 1681 (1986).Google Scholar
52. Roy, R., “New Materials: Fountainhead for New Technologies and New Science,” Intl. Science Lecture Series, The U.S. National Academy of Sciences and the Office of Naval Research (1991/1992).Google Scholar