Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-25T19:01:18.372Z Has data issue: false hasContentIssue false

N- and P-Type Building Blocks for Organic Electronics Based on Oligothiophene Cores

Published online by Cambridge University Press:  15 February 2011

Antonio Facchetti
Affiliation:
Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
Myung-Han Yoon
Affiliation:
Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey 07974, USA.
Howard E. Katz
Affiliation:
Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey 07974, USA.
Melissa Mushrush
Affiliation:
Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey 07974, USA.
Tobin J. Marks
Affiliation:
Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
Get access

Abstract

Organic semiconductors exhibiting complementary-type carrier mobility are the key components for the development of the field of “gplastic electronics” We present here a novel series of α,ω- and isomerically pure ββ'-diperfluorohexyl-substituted thiophene and study the impact of fluoroalkyl substitution and conjugation length vis-a-vis the corresponding fluorinefree analogues. Trends between the fluorinated and fluorine-free families in molecular packing, HOMO-LUMO gap, and π-π interactions are found to be strikingly similar. TFT measurements indicate that all members of the fluorinated series are n-type semiconductors

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] (a) Pappenfus, T. M., Chesterfield, R. J., Frisbie, C., Daniel, M., Kent, R. Casado, J., Raff, J. D., Miller, L. L., J. Am. Chem. Soc. 124, 4184, (2002). (b) P. R. L. Malenfant, C. D. Dimitrakopoulos, J. D. Gelorme, L. L. Kosbar, T. O. Graham, A. Curioni, W. Andreoni, Appl. Phys. Lett. 80, 2517, (2002). (c) H. E. Katz, J. Johnson, A. J. Lovinger, W. Li, J. Am. Chem. Soc. 122, 7787, (2000). (d) B. Crone, A. Dodabalapur, Y. Y. Lin, R. W. Filas, Z. Bao, A. LaDuca, R. Sarpeshkar, H. E. Katz, W. Li, Nature 403, 521, (2000). (e) S. B. Heidenhain, Y. Sakamoto, T. Suzuki, A. Miura, H. Fujikawa, T., Mori, S. Tokito, Y. Taga, J. Am. Chem. Soc 122, 10240, (2000).Google Scholar
[2] (a)Pope, M., Swenberg, C. E., in Electronic Processes in Organic Crystals and Polymers, Oxford University Press, Oxford 1999. (b) C. D. Dimitrakopoulos, P. R. L. Malenfant, Adv. Mater. 14, 99, (2002).Google Scholar
[3] (a) Facchetti, A., Mushrush, M., Katz, H. E., Marks, T. J., Adv. Mater. 15, 33, (2003). (b) A. Facchetti, Y. Deng, A. Wang, Y. Koide, H. Sirringhaus, T. J. Marks, R. H. Friend, Angew. Chem. Int. Ed. 39, 4547, (2000).Google Scholar
[4] For TFT performance. DH-4T: Garnier, F., Hajlaoui, R., ElKassmi, A., Horowitz, G., Laigre, L., Porzio, W.,Armanini, M., Provasoli, F., Chem. Mater. 10, 3334, 1998. DH-5T: W. Li, H. E. Katz, A. J. Lovinger, J. G. Laquindanum, Chem. Mat. 11, 458, 1999. DH-6T: C. D. Dimitrakopoulos, P. R. L. Malenfant, Adv. Mater. 14, 99, 2002.Google Scholar