Skip to main content Accessibility help
×
Home

Murataite-based ceramics for actinide waste immobilization

  • S. V. Stefanovsky (a1), S. V. Yudintse (a2), B. S. Nikonov (a2), B. I. Omelianenko (a2) and A. G. Ptashkin (a3)...

Abstract

Studying the Synroc, doped with a simulated HLW, we have found, along with conventional Synroc phases (zirconolite, perovskite, hollandite), an extra phase with a stoichiornetry (Ca, Mn, U, TR)4(U, TR, Zr, Ti) 2(AI, Ti)7O22. XRD and TEM study has shown this phase is related to a very rare mineral murataite. In the present work a ceramic based on murataite is studied. The ceramic samples in the system: Ca-Mn-Ti-Zr-U-Ce-AI-Fe-O were produced and examined in details using XRD, SEM/EDS, TEM, and optical microscopy. Total amount of actinide (U) and rare earth (Ce, Gd) elements in the murataite exceeds 20 wt%. Isomorphic substitution schemes in the structures of synthetic and natural murataites are discussed. High isomorphic capacity of the murataite structure towards actinides and REEs, flexibility of its composition, feasibility of synthesis by melting, including a cold crucible melting, and very high chemical durability under hydrothermal conditions make the murataite-based ceramics very promising for actinides and excess weapon Pu fixation.

Copyright

References

Hide All
1. Ringwood, A.E., Kesson, S.E., Ware, N.G., et al., Nature. 278, 219 (1979).
2. Harker, A.B., Jantzen, CM., Morgan, PED., and Clarke, D.R., in Scientific Baisis for Nuclear Wat.ste Manlltagement, edited by Moore, J. G. (Plenum Press, New York, 1981), p. 139.
3. Ringwood, A E., Kesson, S. E., Reeve, K.D., Levins, D.M., and Ramm, E.J., in Ratdioactive Waste forms.for the future, edited by Lutze, W. and Ewing, R.C. (Elsevier Science Publishers B.V., 1988) p. 233.
4. Hench, L.L., Clark, D.E., and Campbell, J., Nucl. Chem. Waste Managem. 5, 149 (1984).
5. Dzekun, E.G., Glagolenko, Y.V., Drojko, E.G., et al. in Nuclear and Haitzaidous Waiste Manaigementt, (Amer. Nucl. Soc., Illinois, 1996), pp. 21382139.
6. Ewing, R.C., Weber, W.J., and Clinard, F.W., Progress in Nucl. Energy. 29, 63 (1995).
7. Sobolev, I.A., Stefanovsky, S.V., Ioudintsev, S.V., et al. in Scientific Basis for Nuclear Waste Management XX, edited by Gray, W.J. and Triay, I.R. (Mater. Res. Soc. Proc. 465, Pittsburglh, PA, 1997), pp. 363370.
8. Adams, JW., Botinelly, T., Sharp, W.N., and Robinson, K., Amer. Miner. 59, 172 (1974).
9. Ercit, T.S. and Hawthorne, F.C., Canad. Miner. 33, 1223 (1995).
10. Portnov, A.I., Dubakina, L.S., and Krivovicheva, G.K., Doklady Academii NaukSSSR (in Russ.), 261, 741 (1981).
11. Morgan, P.E.D. and Ryerson, F.J., J. Mater. Sci. Lett. 1, 351 (1982).
12. Morgan, P.E.D., Harker, A.B., Flintoffl, J.F. et al., Advances in Ceramics 8, 234 (1984).
13. Ryerson, F.J., J. Amer. Ceram. Soc. 66. 629 (1983), 67, 75 (1984).
14. Freeborn, W.P. and White, W.B., Advances in Ceram. 8, 368 (1984).
15. Vance, E.R. and Agrawal, D.K., Nucl. Chem. Waste Managem. 3, 229 (1982).
16. Lumpkin, G.R., Smith, K.L., and Blackford, M.G., J. Nucl. Mater. 224, 31 (1995).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed