Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-19T14:35:16.775Z Has data issue: false hasContentIssue false

Multistep, In-Situ Single Wafer Processing - Materials, Device and Equipment Issues

Published online by Cambridge University Press:  25 February 2011

J. R. Hauser
Affiliation:
North Carolina State University, Raleigh, North Carolina 27695-7911
N. A. Masnari
Affiliation:
North Carolina State University, Raleigh, North Carolina 27695-7911
M. A. Littlejohn
Affiliation:
North Carolina State University, Raleigh, North Carolina 27695-7911
Get access

Abstract

Multistep, in-situ single wafer processing is being explored as an alternative processing approach to standard batch silicon wafer processing. Advantages and disadvantages of this approach are explored and an evaluation given of the potential for future advanced, low temperature wafer processing. Multistep, single wafer processing offers many advantages for advanced device and IC development but much technology research and equipment development is needed to achieve its potential.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Duval, Pierre, High Vacuum Production in the Microelectronics Industry, Elsevier, NY (1988).Google Scholar
2. Paper Presented at First, U.S. Technical Symposium on Ultra-Clean Technologies sponsored by Airco Gases.Google Scholar
3. Gibbons, J.F., Gronet, C.M. and Williams, K.E., Appl. Phys. Lett. 47, p. 721 (1985).CrossRefGoogle Scholar
4. Gibbons, J.F., King, C.A., Hoyt, J.L., Noble, D.B., Gronet, C.M., Scott, M.P., Rosner, S.J., Reid, G., Laderman, S., Nauka, K., Turner, J. and Kamins, T.I., Tech. Digest, Int. Electron Devices Meeting, p. 566 (1988).Google Scholar
5. Moslehi, M.M., Shatas, S.C. and Saraswat, K.C., The Fifth Int. Symp. on Silicon Materials Sci. and Technol., ECS Proc. 86–4, p. 379 (1986).Google Scholar
6. Moslehi, M.M., Proc. Mat. Res. Soc. on Rapid Thermal Processing of Electronic Materials (1987).Google Scholar
7. Hill, C. and Jones, S., Levy, R A. Editor, NATO/ASI, Plenum Press (1989).Google Scholar
8. Ozturk, M., Sorrell, F.Y., Wortman, J.J., to be published.Google Scholar
9. Ozturk, M.C. and Wortman, J.J., Mat. Res. Soc. Spring Meeting, San Diego, CA (April 24-29, 1989).Google Scholar
10. Johnson, F. Scott, Miller, R.M., Ozturk, M.C. and Wortman, J.J., Mat. Res. Soc. Spring Meeting, San Diego, CA (April 24-29, 1989).Google Scholar
11. Ohmi, T., Kumagai, H., Morita, M., Ito, M., Kochi, T., Kosugi, M. and Tei, G., ECS Spring Meeting, Ext. Abst. No. 185, Atlanta, GA (May 1988).Google Scholar
12. Moslehi, M.M., Saraswat, K.C. and Shatas, S.C., Mat. Res. Soc. Symp. Proc., 92, p. 295 (1987).CrossRefGoogle Scholar
13. Matsuo, S. and Kiuchi, M., Jap. J. Appl. Phys. Part 2, 22, p. L210 (1983).CrossRefGoogle Scholar
14. Hirao, T., Setsune, K., Kitagawa, M., Kamada, T., Ohmura, T., Wasa, K. and Izumi, T., Jap. J. Appl. Phys. part 2, 27, p. L21 (1988).CrossRefGoogle Scholar
15. Saraswat, K.C., Ext. Abst., SRC TECHCON '88, p. 67, Austin, TX (October 1988).Google Scholar
16. Goldschmidt, D. and Rudiman, P.S., Journal of Non-Cryst. Solids, 22, p. 229 (1977).CrossRefGoogle Scholar
17. Yoshikawa, A., Ochi, O. and Mizushima, Y., Appl. Phys. Lett., 36, p. 107 (1980).CrossRefGoogle Scholar