Hostname: page-component-7bb8b95d7b-pwrkn Total loading time: 0 Render date: 2024-09-21T11:58:42.255Z Has data issue: false hasContentIssue false

Multi-scale modeling of self-irradiation effects in plutonium alloys - Molecular dynamic simulations results

Published online by Cambridge University Press:  26 February 2011

Lilian Berlu
Affiliation:
lilian.berlu@cea.fr, CEA Valduc, CEA centre Valduc, Is sur Tille, Bourgogne, 21120, France
Gaelle Rosa
Affiliation:
gaelle.rosa@cea.fr, CEA Valduc, France
Philippe Faure
Affiliation:
philippe.faure@cea.fr, CEA Valduc, France
Nathalie Baclet
Affiliation:
nathalie.baclet@cea.fr, CEA Valduc, France
Gérald Jomard
Affiliation:
gerald.jomard@cea.fr, CEA Bruyères le Châtel, France
Get access

Abstract

The plutonium α decay leads to the formation of numerous point defects in the metal structure. The multi-scale modeling of self-irradiation effects in plutonium alloys needs a quantitative knowledge of defects population properties. In this work, we initiated a parametric study of molecular dynamics displacement cascade simulations to get properties of defects microstructure such as number of point defects, number and size of clusters, spatial repartition and spatial expansion of the cascade. These data constitute some of the input parameters for the mesoscopic scale simulations. First results obtained for two 2 keV energy cascades simulations are presented and discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Chebotarev, O., Utkina, O., Plutonium and Other Actinides, North-Holland Publishing Company, 599 (1976).Google Scholar
2 Wolfer, W.G., Los Alamos Science 26, 275285 (2000).Google Scholar
3 Oudot, B., PhD Thesis, Universite de Franche-Comté, Besançon, France (2005).Google Scholar
4 Baclet, N., Faure, P., Rosa, G., Ravat, B., Jolly, L., Oudot, B., Berlu, L., Klosek, V., Flament, J.L. and Jomard, G., “Understanding and predicting self-irradiation effects in plutonium alloys: A coupled experimental and theoretical approach”, submitted (2005).Google Scholar
5 Robert, G., Pasturel, A. and Siberchicot, B., Phys. Rev. B 68, 75109 (2003).Google Scholar
6 Daw, M.S. and Baskes, M.I., Phys. Rev. B 29, 6643 (1984).Google Scholar
7 Pochet, P., Nucl. Instr. and Meth. in Phys. Res. B 202, 82 (2003).Google Scholar
8 Baskes, M.I., Phys. Rev. B 62, 15532 (2000).Google Scholar
9 Jomard, G. et al. , private communication (2005).Google Scholar
10 Wilson, W.D., Haggmark, L.G. and Biersack, J.P., Phys. ReV. B 15, 2458 (1977).Google Scholar
11 Birch, F., J. Geophys. Res. 57 (2), 227 (1952).Google Scholar
12 Faure, Ph., Klosek, V., Genestier, C., Baclet, N., Heathman, S. and Normile, P., “Structural investigation of δ-stabilized plutonium alloys under pressure”, this conference.Google Scholar
13 Bacon, D.J., Gao, F., Osetsky, Yu.N., J. Nucl. Mat. 276, 1 (2000).Google Scholar
14 Sorensen, M.R. and Voter, A. F., J. Chem. Phys. 112, 9599 (2000).Google Scholar