Skip to main content Accessibility help

Multi-paradigm multi-scale modeling of dynamical crack propagation in silicon using the ReaxFF reactive force field

  • Markus J. Buehler (a1), Adri C.T. van Duin (a2) and William A. Goddard III (a3)


We report a study of dynamic cracking in a silicon single crystal in which the ReaxFF reactive force field is used for ∼3,000 atoms near the crack tip while the other 100,000 atoms of the model system are described with a simple nonreactive force field. The ReaxFF is completely derived from quantum mechanical calculations of simple silicon systems without any empirical parameters. Our results reproduce experimental observations of fracture in silicon including details of crack dynamics for loading in the [110] orientations, such as dynamical instabilities with increasing crack velocity. We also observe formation of secondary microcracks ahead of the moving mother crack. We conclude with a study of Si(bulk)-O2 systems, showing that Si becomes more brittle in oxygen environments, as known from experiment.



Hide All
[1] Deegan, R. D., Chheda, S., Patel, L., Marder, M., Swinney, H. L., Kim, J., Lozanne, A. d., Phys. Rev. E 67 (2003) 066209.
[2] Cramer, T., Wanner, A., Gumbsch, P., Phys. Rev. Lett. 85 (2000) 788791.
[3] Cramer, T., Wanner, A., Gumbsch, P., Phys. Status Solidi A 164 (1997) R5.
[4] Hauch, J. A., Holland, D., Marder, M., Swinney, H. L., Phys. Rev. Lett. 82 (1999) 3823–2826.
[5] Holland, D., Marder, M., Phys. Rev. Lett. 80 (1998) 746.
[6] Abraham, F. F., Broughton, J. Q., Bernstein, N., Kaxiras, E., Computers in Physics 12 (1998) 538546.
[7] Bailey, N. P., Sethna, J. P., Phys. Rev. B 68 (2003) 205204.
[8] Bazant, M. Z., Kaxiras, E., Justo, J. F., Physical Review B-Condensed Matter 56 (1997) 8542.
[9] Swadener, J. G., Baskes, M. I., Nastasi, M., Phys. Rev. Lett. 89 (2002) 085503.
[10] Baskes, M. I., Phys. Rev. B 29 (1984) 64436543.
[11] Baskes, M. I., Journal Of Metals 40 (1988) 123–123.
[12] Finnis, M. W., Sinclair, J. E., Phil. Mag. A 50 (1984) 4555.
[13] Tersoff, J., Phys. Rev. Lett. 61 (1988) 28792883.
[14] Stillinger, F., Weber, T. A., Phys. Rev. B 31 (1985) 52625271.
[15] Duin, A. C. T. v., Dasgupta, S., Lorant, F., Goddard, W. A., J. Phys. Chem. A 105 (2001) 93969409.
[16] Duin, A. C. T. v., Strachan, A., Stewman, S., Zhang, Q., Xu, X., Goddard, W. A., J. Phys. Chem. A 107 (2003) 38033811.
[17] Parker, S. G., Johnson, C. R., Beazley, D., IEEE Computational Science and Engineering 4 (1997) 50599.
[18] Gao, H., J. Mech. Phys. Solids 44 (1996) 14531474.
[19] Buehler, M. J., Abraham, F. F., Gao, H., Nature 426 (2003) 141146.
[20] Buehler, M. J., Gao, H., Accepted for publication in: Nature.
[21] Becke, A. D., J. Chem. Phys. 98 (1993) 56485652.
[22] Abraham, F. F., Walkup, R., Gao, H., Duchaineau, M., Rubia, T. D. d. L., Seager, M., P. Natl. Acad. Sci. USA 99 (2002) 57835787.
[23] Fineberg, J., Gross, S. P., Marder, M., Swinney, H. L., Phys. Rev. Lett. 67 (1991) 457460.
[24] Wu, Y. Q., Xu, Y. B., Phil. Mag. Lett. 78 (1998) 913.
[25] Bouchbinder, E., Kessler, D., Procaccia, I., Phys. Rev. E 70 (2004) 046107.
[26] Buehler, M. J., Gao, H., under submission (2005).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed