Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-19T11:56:45.017Z Has data issue: false hasContentIssue false

Multinuclear NMR and Powder X-ray Diffraction Studies of Si and Sn Clathrates of Alkali Metals: Vacancies, Disorder and Knight Shifts

Published online by Cambridge University Press:  21 March 2011

Michael J. Ferguson
Affiliation:
Steacie Institute for Molecular Sciences, National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
Igor L. Moudrakovski
Affiliation:
Steacie Institute for Molecular Sciences, National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
Christopher I. Ratcliffe
Affiliation:
Steacie Institute for Molecular Sciences, National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
John S. Tse
Affiliation:
Steacie Institute for Molecular Sciences, National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
Get access

Abstract

The Structure I type binary metal clathrates of K/Si, Rb/Si and Cs/Sn have been synthesised and studied by powder X-ray diffraction and solid state NMR. Rietveld analysis shows that in all three materials some of the cages are empty, and that in the Cs/Sn clathrate there are vacancies in the Sn framework. The NMR results yield Knight shifts for 29Si and 39K and confirm that the Cs/Sn clathrate is not conducting. Many of the features of the NMR spectra can be understood in terms of the distributions of atom vacancies.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cros, C., Pouchard, M. and Hagenmuller, P., Compt. Rend. Acad. Sci. Paris, 260, 4764 (1965); J. Sol. Stat. Chem., 2, 570 (1970); Bull. Soc. Chim. France, 2, 379 (1971).Google Scholar
2. Kasper, J.S., Hagenmuller, P., Pouchard, M. and Cros, C., Science, 150, 1713 (1965).Google Scholar
3. Cros, C., Benejat, J.-C., Bull. Soc. Chim. France, 5, 1739 (1972).Google Scholar
4. Cros, C., Pouchard, M., Hagenmuller, P., Kasper, J.S., Bull. Soc. Chim. France, 1968, 2737.Google Scholar
5. Gallmeier, J., Schafer, H., Weiss, A., Zeits. Nat. 22b, 1080 (1967); 24b, 665 (1969).Google Scholar
6. Nolas, G.S., Cohn, J.L., Slack, G.A., Schujman, S.B., Appl. Phys. Letts. 73, 178 (1998).Google Scholar
7. Gryko, J., McMillan, P.F. and Sankey, O.F., Phys. Rev. B, 54, 3037 (1996).Google Scholar
8. Gryko, J., McMillan, P.F., Marzke, R.F., Dodokin, A.P., Demkov, A.A. and Sankey, O.F., Phys. Rev. B, 57, 4172 (1998).Google Scholar
9. Reny, E., Menetrier, M., Cros, C., Pouchard, M. and Senegas, J., C. R. Acad. Sci. Paris, Ser. IIc, 1, 129 (1998).Google Scholar
10. Ramachandran, G.K., McMillan, P.F., Diefenbacher, J., Gryko, J., Dong, J. and Sankey, O.F., Phys. Rev. B, 60, 12294 (1999).Google Scholar
11. He, J., Klug, D.D., Uehara, K., Preston, K.F., Ratcliffe, C.I. and Tse, J.S., J. Phys. Chem. B 105, 3475 (2001).Google Scholar
12. Ramachandran, G.K., McMillan, P.F., Dong, J. and Sankey, O.F., J. Sol. Stat. Chem. 154, 626 (2000).Google Scholar
13. Grin, Yu.N., Melekhov, L.Z., Chuntonov, K.A. and Yatsenko, S.P., Sov. Phys. Crystallogr., 32, 290 (1987).Google Scholar
14. Zhao, J.-T. and Corbett, J.D., Inorg. Chem., 33, 5721 (1994).Google Scholar
15. Schnering, H.G. von, Kroner, R., Baitinger, M., Peters, K., Nesper, R. and Grin, Yu., Z. Kristallogr. 215, 205 (2000).Google Scholar
16. Myles, C.W., Dong, J. and Sankey, O.F., Phys. Rev. B, 64, 165202 (2001).Google Scholar
17. Carter, G.C., Bennett, L.H. and Kahan, D.J., Metallic Shifts in NMR, in Progress in Materials Science, 20, Part I (1977).Google Scholar