Hostname: page-component-5c6d5d7d68-qks25 Total loading time: 0 Render date: 2024-08-16T01:40:36.982Z Has data issue: false hasContentIssue false

Multilevel Contact System with a Thin Silicide Reaction Controlling Interlayer

Published online by Cambridge University Press:  03 September 2012

F. Fenske
Affiliation:
Hahn-Meitner-Institut Berlin GmbH, Dept. Photovoltaik, Rudower Chaussee 5, D-12489 Berlin, Germany
S. Schulze
Affiliation:
Technical University Chemnitz-Zwickau, Dept. Physics, PF 964, D-09009 Chemnitz, Germany
B. Selle
Affiliation:
Hahn-Meitner-Institut Berlin GmbH, Dept. Photovoltaik, Rudower Chaussee 5, D-12489 Berlin, Germany
H. Lange
Affiliation:
Hahn-Meitner-Institut Berlin GmbH, Dept. Photovoltaik, Rudower Chaussee 5, D-12489 Berlin, Germany
W. Wolke
Affiliation:
Technical University Chemnitz-Zwickau, Dept. Physics, PF 964, D-09009 Chemnitz, Germany
Get access

Abstract

Taking advantage of controllable interdiffusion and reaction processes by using a 50 nm thin Ti interlayer an annealing step in the temperature range from 450 to 475°C transforms the TiNiAg layer sequence on silicon into a stable final state, whereby a contamination free, homogeneous nanoscale NiSi contact layer arises with low values of the contact resistance. Intercalating a thin Ti layer the nickel silicide growth rate is lowered by 2 orders of magnitude. Low sheet resistance and a good bondability are preserved by the remaining Ni-Ag top layer sequence which does not interact during the contact formation process.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tu, K.N., Hammer, W.N., Olowolafe, J.O., J.Appl.Phys. 51, 1663 (1980).Google Scholar
2. Fenske, F. et al. , Patent DD 277 602, (21 December 1987).Google Scholar
3. Lee, J.-H., Rozgonyi, G.A., Patnaik, B.K., Knoesen, D., Adams, D., Balducci, P., Salih, A.S.M., J.Appl. Phys. 73, 4023 (1993).Google Scholar
4. Duchateau, J.P.W.B., Kuiper, A.E.T., Lathouwers, E.G.C., Reader, A.H., J.Vac.Sci.Technol. A11, 6 (1993).Google Scholar
5. Murarka, S.P., J.Vac.Sci.Technol. B2, 693 (1984).Google Scholar
6. Kattelus, H.P., Nicolet, M.-A., in Diffusion Phenomena in Thin Films and Microelectronic Materials, edited by Gupta, D. and Ho, P.S. (Noyes Publications, Park Ridge, New Jersey,1988), p.432.Google Scholar
7. Reeves, G.K., Solid-State Electr. 23, 487 (1980).Google Scholar
8. Setton, M., Spiegel, J. van der, Santiago, J.J., Wei, C.S., Le vide les couches minces 42, 145 (1987).Google Scholar
9. Lien, C.-D., Nicolet, M.-A., Lau, S.S., Thin Solid Films 143, 63 (1986).CrossRefGoogle Scholar
10. Meng, W.J., Fultz, B., Ma, E., Johnson, W.L., Appl. Phys. Lett. 51, 661 (1987).Google Scholar
11. Hung, L.S., Wang, S.Q., Mayer, J.W., Saris, F.W., Mat.Res.Symp.Proc. 54, 161 (1986).Google Scholar
12. Lee, C.H., Wong, Y.M., Doherty, C., Tai, K.L., Lane, E., Bacon, D.D., Baiocchi, F., Katz, A., J. Appl. Phys. 72, 3808 (1992).Google Scholar
13. Fenske, F., Lange, H., Elstner, L., presented at the 13th General Conference, Regensburg, Germany, March 29 - April 2, 1993 (unpublished).Google Scholar
14. Cowley, A.M., Solid-State Electr. 13, 403 (1970).Google Scholar
15. Andrews, J.M., Koch, F.B., Solid-State Electr. 14, 901 (1971).Google Scholar
16. Chen, L.J., Lur, W., Cheng, J.Y., Thin Solid Films 191, 221 (1990).Google Scholar