Hostname: page-component-7c8c6479df-nwzlb Total loading time: 0 Render date: 2024-03-19T09:38:40.134Z Has data issue: false hasContentIssue false

Multiferroic Bi2NiMnO6 with a Double-Perovskite Structure: High-Pressure Synthesized Bulk and Epitaxially Grown Thin Films

Published online by Cambridge University Press:  01 February 2011

Yuichi Shimakawa*
Affiliation:
shimak@scl.kyoto-u.ac.jp, Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan, +81-774-38-3110, +81-774-38-3118
Get access

Abstract

A new multiferroic compound Bi2NiMnO6 was synthesized in both bulk and thin-film forms. Bulk samples were prepared under a high pressure condition at 6 GPa, and thin-film samples were epitaxially grown on single-crystal SrTiO3 substrates by a pulsed-laser deposition method. The crystal structure of the material is a double perovskite, in which Ni2+ and Mn4+ ions are ordered in a rock-salt configuration. Bi3+ ions at the A-site cause a noncentrosymmetric (C2) structural distortion which allows a spontaneous ferroelectric polarization at room temperature. Ni2+–O–Mn4+ magnetic paths lead to ferromagnetism through the superexchange interaction according to the Kanamori-Goodenough rule. A coupling between the ferromagnetic and ferroelectric interactions appears to exist, but it is quite small.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Smolenskii, G.A. and Chupis, I.E., Sov. Phys. Usp. 25, 475 (1982).Google Scholar
2. Wang, J., Neaton, J.B., Zheng, H., Nagarajan, V., Ogale, S.B., Liu, B., Viehland, D., Vaithyanathan, V., Schlom, D.G., Waghmare, U.V., Spaldin, N.A., Rabe, K.M., Wutting, M., and Ramesh, R., Science 299, 1719 (2003).Google Scholar
3. Yun, K., Ricinschi, D., Kanashima, T., Noda, M., and Okuyama, M., Jpn. J. Appl. Phys. 43, L647 (2004).Google Scholar
4. Kimura, T., Goto, T., Shintani, H., Ishizuka, K., Arima, T., and Tokura, Y., Nature 426, 55 (2003).Google Scholar
5. Hur, N., Park, S., Sharma, P. A., Ahn, J.S., Guha, S., and Cheong, S.-W., Nature 429, 392 (2004).Google Scholar
6. Katsura, H., Nagaosa, N., and Balatsky, A.V., Phys. Rev. Lett. 95, 57205 (2005).Google Scholar
7. Azuma, M., Takata, K., Saito, T., Ishiwata, S., Shimakawa, Y., and Takano, M., J. Am. Chem. Soc. 127, 8889 (2005).Google Scholar
8. Sakai, M., Masuno, A., Kan, D., Hashisaka, M., Takata, K., Azuma, M., Takano, M., and Shimakawa, Y., Appl. Phys. Lett. 90, 72903 (2007).Google Scholar
9. Shimakawa, Y., Kan, D., Kawai, M., Sakai, M., Inoue, S., Azuma, M., Kimura, S., and Sakata, O., Jpn. J. Appl. Phys., 46, L845 (2007).Google Scholar
10. Nishibori, E., Takata, M., Kato, K., Sakata, M., Kubota, Y., Aoyagi, S., Kuroiwa, Y., Yamanaka, M., and Ikeda, N., Nucl. Inst. Methods Phys. Rev. A, 467–468, 1045 (2001).Google Scholar
11. Izumi, F. and Ikeda, T., Mater. Sci. Forum 321–324, 198 (2000).Google Scholar
12. Sakata, O., Furukawa, Y., Goto, S., Mochizuki, T., Uraga, T., Takeshita, K., Ohashi, H., Ohata, T., Matsushita, T., Takahashi, S., Tajiri, H., Ishikawa, T., Nakamura, M., Ito, M., Sumitani, K., Takahashi, T., Shimura, T., Saito, A., and Takahashi, M., Surf. Rev. Lett. 10, 543 (2003).Google Scholar
13. Brown, I.D. and Altermatt, D., Acta Crystallogr. Sect. B 41, 244 (1985).Google Scholar