Hostname: page-component-7bb8b95d7b-495rp Total loading time: 0 Render date: 2024-09-23T12:21:27.406Z Has data issue: false hasContentIssue false

Morphology Control of ZnO Nanomaterials using Double Hydrophilic Block Copolymers

Published online by Cambridge University Press:  26 February 2011

A. Mezy
Affiliation:
tedenac@lpmc.univ-montp2.fr
C. Gérardin
Affiliation:
tedenac@lpmc.univ-montp2.fr
D. Tichit
Affiliation:
tedenac@lpmc.univ-montp2.fr
S. Suwanboon
Affiliation:
tedenac@lpmc.univ-montp2.fr
D. Ravot
Affiliation:
tedenac@lpmc.univ-montp2.fr, ENSCM
Tedenac Jean-Claude
Affiliation:
tedenac@lpmc.univ-montp2.fr, ENSCM, 8 rue de l'ecole Normale, Montpellier, Cedex, 5, France
T. Bretagnon
Affiliation:
tedenac@lpmc.univ-montp2.fr, Universite Montpellier
P. Lefèbvre
Affiliation:
tedenac@lpmc.univ-montp2.fr, Universite Montpellier
Get access

Abstract

Highly crystalline zinc oxide (ZnO) nanomaterials are synthesized using a seeded growth sol-gel method. In order to control the morphology and the organization of the ZnO nanomaterials, a double hydrophilic block copolymer has been introduced during the seeded growth synthesis: the Polyacrylic acid-Polyacrylamide (PAA-PAM). Depending on the amount of PAA-PAM copolymers, different morphologies were obtained, such as ZnO nanostructured spheres or flat hexagonal crystals. Thus, systematic studies have been done to investigate the influence of the copolymer addition on ZnO nanomaterial morphologies and explain the mechanisms of the morphological modifications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Chen, Y.F., Bagnall, D.M., Koh, H., Park, K., Higara, K., Zhu, Z., and Yao, T., J. Appl. Phys. 84, 3912 (1998).Google Scholar
2 Thomas, D.G., J. Phys. Chem. Solids 15, 86 (1960).Google Scholar
3 Majumder, S.B., Jain, M., Dobal, P.S. and Katiyar, R.S., Materials Science and Engineering B, 103, 16 (2003).Google Scholar
4 Dong, L., Liu, Y.C., Tong, Y.H., Xiao, Z.Y., Zhang, J.Y., Lu, Y.M., Shen, D.Z. and Fan, X.W., J. Colloid and interface Science, 283, 380 (2005).Google Scholar
5 Huang, Y., Liu, M., Li, Z., Zeng, Y. and Liu, S. Materials Science and Engineering B, 97, 111 (2003).Google Scholar
6 Takai, O., Futsuhara, M., Shimizu, G., Lungu, C.P., J. Thin Solid Films 318, 117 (1998)Google Scholar
7 Hu, J., Gordon, R.G, J. Appl. Phys. 71, 880 (1992).Google Scholar
8 Paraguay, D.F., Morales, J., Estrada, L.W., Andrade, E., Miki-Yoshida, M., Thin Solid Films, 366, 16 (2000).Google Scholar
9 Jin, M., Feng, J., De-Heng, Z., Hong-lei, M., Shu-Ying, L., Thin Solid Films, 357, 98, (1999).Google Scholar
10 Gérardin, C., Sanson, N., Bouyer, F., Fajula, F., Putaux, J-L., Joanicot, M., Chopin, T. Angewandte Chemie, 42, 36813685 (2003).Google Scholar
11 Hung, C-H., Whang, W-T. Materials Chemistry and Physics, 82, 705 (2003).Google Scholar
12 Öner, M., Norwig, J., Meyer, W-H., Wegner, G. Chemistry of Materials, 10 (2), 460463(1998).Google Scholar