Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-25T14:59:25.737Z Has data issue: false hasContentIssue false

Morphology and Defect Structure of Sputtered High-Quality In-Situ YBa2Cu3O7−δ Films

Published online by Cambridge University Press:  21 February 2011

S. K. Streiffer
Affiliation:
Stanford University, Department of Materials Science and Engineering, Stanford, CA. 94305
B. M. Lairson
Affiliation:
Stanford University, Department of Materials Science and Engineering, Stanford, CA. 94305
C. B. Eom
Affiliation:
Stanford University, Department of Materials Science and Engineering, Stanford, CA. 94305
A. F. Marshallt
Affiliation:
Center for Materials Research, Stanford, CA. 94305
J. C. Bravman
Affiliation:
Stanford University, Department of Materials Science and Engineering, Stanford, CA. 94305
T. H. Geballe
Affiliation:
Department of Applied Physics, Stanford, CA. 94305
Get access

Abstract

Transmission Electron Microscopy has been used to study the morphology and defect structure of sharp superconducting transition, high (2-6 ×107 A/cm2) critical current YBa2Cu3O7−δ films on MgO substrates. These were oriented such that the unit cell axes of the film aligned with those of the substrate, with some domains obeying a second orientation relationship rotated by 45° in the plane of the film, i.e. film <110> parallel to substrate <100>. The latter is not expected from simple lattice matching considerations. A strong influence of substrate surface topography on film microstructure was noted, leading to a high density of out-of-phase, low-angle tilt, and other boundaries near the substrate-film interface, which decreased with increasing distance from the substrate. Finally, the effects on film microstructure of two variables of specific interest in our sputtering system were investigated: the thickness of the deposited film, and the temperature at which a high oxygen pressure (500 torr) is introduced after deposition is complete. Increases in film thickness resulted in longer, more widely spaced twins, whereas lower oxygenation temperatures resulted in shorter twins.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Babcock, S.E. and Larbalestier, D.C., Appl. Phys. Lett. 55 393 (1989).Google Scholar
2. Dimos, D., Chaudhari, P., Mannhart, J., and LeGoues, F.K., Phys. Rev. Lett. 61 219 (1988).Google Scholar
3. Eom, C.B., Sun, J.Z., Yamamoto, K., Marshall, A.F., Luther, K.E., and Geballe, T.H., Appl. Phys. Lett. 55, 595 (1989).Google Scholar
4. Bean, C.P., Phys. Rev. Lett. 8, 250 (1962).Google Scholar
5. Bravman, J.C. and Sinclair, R., J. Elec. Micro. Tech. 1, 53 (1984).Google Scholar
6. Ramesh, R., Hwang, D.M., Ravi, T.S., Inam, A., Barner, J.B., Nazar, L., Chen, C.Y., Dutta, B., and Venkatesan, T., submitted to Appl. Phys. Lett.Google Scholar
7. Laderman, S. S., to be published.Google Scholar
8. Tietz, L.A., Carter, C.B., Lathrop, D.K., Russek, S.E., Buhrman, R.A., and Michael, J.R., J. Mater. Res. 4, 1072 (1989).Google Scholar
9. Barry, J.C., J. Electron Microsc. Tech. 8, 325 (1988).10.1002/jemt.1060080312Google Scholar
10. for example Chen, C.H., Kwo, J., and Hong, M., Appl. Phys. Lett. 52, 841 (1988).Google Scholar
11. Hwang, D.M., Venkatesan, T., Chang, C.C., Nazar, L., Wu, X.D., Inam, A., and Hedge, M.S., Appl. Phys. Lett. 54, 1702 (1989).Google Scholar
12. Jorgensen, J.D., Beno, M.A., Hinks, D.G., Soderham, L., Volin, K.J., Hitterman, R.L., Grace, J.D., Schuller, I.K., Segre, C.U., Zhang, K., and Kleefisch, M.S., Phys. Rev. B 36, 3608 (1987).10.1103/PhysRevB.36.3608Google Scholar
13. Hammond, R. H. and Bormann, R., in Proceedings of the Materials and Mechanisms ot Superconductivity High Temperature Superconductors II, edited by Shelton, R. N., Harrison, W. A., and Phillips, N. E. (North-Holland, the Netherlands, 1989) pp. 703704.Google Scholar
14. Tendeloo, G. van, Zandbergen, H.W., and Amelinckx, S., Solid State Commun. 63, 389 (1987).Google Scholar
15. Hiraga, K., Shindo, D., Hirabayashi, M., Kikuchi, M., and Syono, Y., J. Electron Microsc. 36, 261 (1987).Google Scholar
16. Tendeloo, G. van, Zandbergen, H.W., and Amelinckx, S., Solid State Commun. 63, 603 (1987).Google Scholar
17. Hirotsu, Y., Nakamura, Y., Murata, Y., Nagakura, S., Nishihara, T., and Takata, M., Jpn. J. Appl. Phys. 26, L1168 (1987).Google Scholar
18. Jou, C. J. and Washburn, J., J. Mater. Res. 4, 795 (1989).10.1557/JMR.1989.0795Google Scholar
19. Zhu, Y., Suenaga, M., Youwen, Xu, Sabatini, R.L., and Moodenbaugh, A.R., Appl. Phys. Lett. 54, 374 (1989).10.1063/1.101349Google Scholar
20. Lairson, B. M., Streiffer, S. K., and Bravman, J. C., to be published.Google Scholar