Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-20T03:11:54.977Z Has data issue: false hasContentIssue false

Monte Carlo Simulation of Radioactive Contaminant Transport in Fractured Geologic Media: Disorder and Long-Range Correlations

Published online by Cambridge University Press:  03 September 2012

Sumit Mukhopadhyay
Affiliation:
Center for Applied Mathematics, Purdue University, West Lafayette, Indiana 47907–1395.
John H. Cushman
Affiliation:
Center for Applied Mathematics, Purdue University, West Lafayette, Indiana 47907–1395.
Get access

Abstract

The geologic media near Yucca mountain site consist of fractured welded tuffs along with less fractured unwelded tuff. Numerical simulation of flow and transport in such media poses a number of challenging problems, due mainly to the heterogeneities and disorder in the media. In addition, because of different dominant transport mechanisms in different regions of the media, investigations need to be carried out at different time-scales. “Time-marching” will pose a considerable problem in analyzing such multi-scale transient problems. We develop a field-scale network model of fractures and study transport of radionuclides through geologic media as a function of disorder and correlated fracture-permeabilities.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Montazer, P. and Wilson, W. E., Report 84–4345, U. S. Geological Survey (1984).Google Scholar
[2] Hoxie, D. T., in: GEOVAL-1990, Stockholm, Sweden (1990).Google Scholar
[3] Sahimi, M. and Imdakm, A. O., J. Phys. A: Math. Gen. 21, 38333870 (1988).10.1088/0305-4470/21/19/019Google Scholar
[4] Berkowitz, B. and Braester, C., Water Resour. Res. 27, 31593164 (1991).10.1029/91WR02179Google Scholar
[5] Sudicky, E. A. and McLaren, R. G., Water Resour. Res. 28, 499514 (1992).10.1029/91WR02560Google Scholar
[6] Koplik, J., Redner, S., Wilkinson, D., Phy. Rev. A 37, 26192636 (1988).10.1103/PhysRevA.37.2619Google Scholar
[7] Barton, C. C. and Hsieh, P. A., Guidebook T385, AGU, Las Vegas, Nevada (1989).Google Scholar
[8] Sahimi, M., Robertson, M. C., and Sammis, C. G., Phys. Rev. Lett. 70, 21862189 (1993).10.1103/PhysRevLett.70.2186Google Scholar
[9] Sahimi, M., Rev. Mod. Phys. 65, 1393 (1993).10.1103/RevModPhys.65.1393Google Scholar
[10] Jerauld, G. R., Hatfield, J. C., Scriven, L. E., and Davis, H. T., J. Phys. C17, 15191529 (1984).Google Scholar
[11] Stauffer, D. and Aharony, A., Introduction to Percolation Theory, 2nd edition, Taylor and Francis, London (1992).Google Scholar
[12] Prakash, S., Havlin, S., Schwartz, M., and Stanley, H. E., Phys. Rev. A 46, R1724 (1992).10.1103/PhysRevA.46.R1724Google Scholar
[13] Sahimi, M., AIChEJ 41, 229240, 1995b.10.1002/aic.690410205Google Scholar
[14] Sahimi, M. and Mukhopadhyay, S., Phys. Rev. E, 1995 (submitted).Google Scholar
[15] Mukhopadhyay, S., Ph. D. thesis, University of Southern California, 1995.Google Scholar
[16] Tang, D. H., Frind, E. O., and Sudicky, E. A., Water Resour. Res. 17, 555564 (1981).10.1029/WR017i003p00555Google Scholar
[17] Freeze, R. A. and Cherry, J. A., Groundwater, Prentice-Hall, Englewood Cliffs, N. J., 1979.Google Scholar
[18] Bear, J., Dynamics of Fluids in Porous Media, Elsevier, New York (1972).Google Scholar
[19] Sahimi, M., Hughes, B. D., Scriven, L. E., and Davis, H. T., Chemial Engg. Sci. 41, 21032122 (1986).10.1016/0009-2509(86)87128-7Google Scholar
[20] Hewett, T. A., paper SPE 15386 presented at the 1986 SPE Annual Technical conference and Exhibition, New Orleans (1986).Google Scholar
[21] Crump, K. S., J. Assoc. Comput. Mach. 23, 8996 (1976).10.1145/321921.321931Google Scholar
[22] MacDonald, J. R., J. Appl Phys. 10 30343041 (1964).10.1063/1.1713152Google Scholar