Skip to main content Accessibility help

Monte Carlo Simulation of Precipitate Nucleation and Growth: Time Dependent Results

  • James P. Lavine (a1) and Gilbert A. Hawkins (a1)


A three-dimensional Monte Carlo computer program has been developed to study the heterogeneous nucleation and growth of oxide precipitates during the thermal treatment of crystalline silicon. In the simulations, oxygen atoms move on a lattice with randomly selected lattice points serving as nucleation sites. The change in free energy that the oxygen cluster would experience in gaining or losing one oxygen atom is used to govern growth or dissolution of the cluster. All the oxygen atoms undergo a jump or a growth decision during each time step of the anneal. The growth and decay kinetics of each nucleation site display interesting fluctuation phenomena. The time dependence of the cluster size generally differs from the expected 3/2 power law due to the fluctuations in oxygen arrival at and incorporation in a precipitate. Competition between growing sites and coarsening are observed.



Hide All
1. Russell, K. C., Adv. Colloid Interface Sci. 13, 205 (1980).
2. Burton, J. J., in Modern Theoretical Chemistry, Vol. 5, Statistical Mechanics, Part A, edited by Berne, B. J. (Plenum Press, New York, 1977), ch. 6.
3. Kehr, K. W. and Binder, K., in Applications of the Monte Carlo Method in Statistical Physics, edited by Binder, K. (Springer-Verlag, Berlin, 1984), ch. 6.
4. Hu, S. M., J. Appl. Phys. 52, 3974 (1981).
5. Craven, R. A., in Semiconductor Silicon 1981, edited by Huff, H. R., Kriegler, R. J., and Takeishi, Y. (The Electrochemical Society, Pennington, NJ, 1981), pp. 254271.
6. Yang, K., Carle, J., and Kleinhenz, R., J. Appl. Phys. 62, 4890 (1987).
7. Rivaud, L., Anagnostopoulos, C. N., and Erikson, G. R., J. Electrochem. Soc. 135, 437 (1988).
8. Voorhees, P. W. et al. , Acta Metall. 36, 207 (1988).
9. Voorhees, P. W. and Glicksman, M. E., Acta Metall. 32, 2001 and 2013 (1984).
10. Lavine, J. P. et al. , in Oxygen. Carbon, Hydrogen and Nitrogen in Crystalline Silicon, edited by Mikkelsen, J. C. Jr., Pearton, S. J., Corbett, J. W., and Pennycook, S. J. (Mater. Res. Soc. Proc. 59, Pittsburgh, PA, 1986), pp. 301307.
11. Marder, M., Phys. Rev. Lett. 52, 2953 (1985).
12. Hawkins, G. A. and Lavine, J. P., in Defects in Electronic Materials, edited by Stavola, M., Pearton, S. J., and Davies, G. (Mater. Res. Soc. Proc. 104, Pittsburgh, PA, 1988), pp. 197200.
13. Watkins, G. D., Corbett, J. W., and McDonald, R. S., J. Appl. Phys. 53, 7097 (1982).
14. Turnbull, D. and Fisher, J. C., J. Chem. Phys. 17, 71 (1949).
15. Katz, J. L. and Wiedersich, H., J. Colloid Interface Sci. 1, 351 (1977).
16. Katz, J. L. and Spaepen, F., Phil. Mag. B 37, 137 (1978).
17. Ham, F. S., J. Phys. Chem. Solids 6, 335 (1958).
18. Russell, K. C., Acta Metall. 16, 761 (1968).
19. Lavine, J. P., Taras, R. J., and Hawkins, G. A., this Proceedings.

Monte Carlo Simulation of Precipitate Nucleation and Growth: Time Dependent Results

  • James P. Lavine (a1) and Gilbert A. Hawkins (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed