Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-23T08:43:39.142Z Has data issue: false hasContentIssue false

Monte Carlo Modelling of Glass Dissolution: Comparison with Experiments

Published online by Cambridge University Press:  21 March 2011

M. Lobanova
Affiliation:
Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique & CNRS, 91128 Palaiseau Cedex, France
L. Maurer
Affiliation:
Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique & CNRS, 91128 Palaiseau Cedex, France
P. Barboux
Affiliation:
Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique & CNRS, 91128 Palaiseau Cedex, France
F. Devreux
Affiliation:
Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique & CNRS, 91128 Palaiseau Cedex, France Email: francois.devreux@polytechnique.fr
Y. Minet
Affiliation:
Laboratoire d'Etude de l'Altérabilité des Matériaux, DCC/DRDD/SCD, CEA-Marcoule, BP 171, 30207 Bagnols-sur-Cèze Cedex, France
Get access

Abstract

One presents the results of numerical simulations of glass leaching. The glass is modelled as a random mixture of partly and totally soluble species, which represent silica, and boron or alkali oxides, respectively. It is shown that the dissolution rate and the thickness of the altered surface layer are strongly dependent on the glass composition, whereas the equilibrium solubility is not. The dependence of the layer thickness on the glass surface area to solution volume ratio is also emphasized. The protective role of the surface layer is shown to arise from its restructuring after the extraction of the soluble species. The simulation results are compared to an experimental study performed on series of SiO2-B2O3-Na2O glasses.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Aertsens, M. and Iseghem, P. Van, Mat. Res. Symp. Proc. 412, 271 (1996).Google Scholar
2. Aertsens, M., Mat. Res. Symp. Proc. 556, 409 (1999).Google Scholar
3. Grambow, B., Mat. Res. Symp. Proc. 44, 15 (1985).Google Scholar
4. Vernaz, E. and Dussossoy, J.L., Appl. Geochem. 1, 13 (1992).Google Scholar
5. Ebert, W.L. and Mazer, J.J., Mat. Res. Symp. Proc. 333, 27 (1994).Google Scholar
6. Devreux, F., Barboux, P., Filoche, M. and Sapoval, B., J. Mat. Sci., in press (2001).Google Scholar
7. Devreux, F. and Barboux, P., submitted to J. Nucl. Mat.Google Scholar
8. Hoschen, J. and Kopelman, R., Phys.Rev B 14, 3428 (1976).Google Scholar
9. Xing, S.B., Buchele, A.C. and Pegg, I.L., Mat. Res. Symp. Proc. 333, 541 (1994).Google Scholar
10. Jegou, C., Gin, S. and Larché, F., to be published in J. Nucl. Mat.Google Scholar
11. Charlot, G., Les Méthodes de la Chimie Analytique, (Masson, Paris, 1966), pp. 903, 942.Google Scholar
12. Bunker, B.C., Arnold, G.W., Day, D.E., and Bray, P.J., J. Non-Cryst. Solids 87, 226 (1986).Google Scholar