Hostname: page-component-7bb8b95d7b-dtkg6 Total loading time: 0 Render date: 2024-09-21T05:16:28.319Z Has data issue: false hasContentIssue false

Molecular-Dynamics Simulation of the Initial Period of Cluster Deposition

Published online by Cambridge University Press:  11 February 2011

K. Shintani
Affiliation:
Dept of ME & Intelligent Sys, Univ of Electro-Comm, 1–5–1 Chofugaoka, Chofu, Tokyo 182–8585, Japan, E-mail: shintani@mce.uec.ac.jp, URL: http://www.shintani.mce.uec.ac.jp/
T. Nakajima
Affiliation:
Dept of ME & Intelligent Sys, Univ of Electro-Comm, 1–5–1 Chofugaoka, Chofu, Tokyo 182–8585, Japan, E-mail: shintani@mce.uec.ac.jp, URL: http://www.shintani.mce.uec.ac.jp/
Y. Taniguchi
Affiliation:
Dept of ME & Intelligent Sys, Univ of Electro-Comm, 1–5–1 Chofugaoka, Chofu, Tokyo 182–8585, Japan, E-mail: shintani@mce.uec.ac.jp, URL: http://www.shintani.mce.uec.ac.jp/
Get access

Abstract

The initial periods of deposition process of metal clusters in the soft-landing regime are investigated by the molecular-dynamics simulation. The embedded-atom method potential is adopted for calculation of the interaction between metallic atoms. The predictor-corrector method for second-order differential equations is employed for integration of the equations of motion. A simulation begins with equilibration of clusters and a substrate at a specified temperature. The lowest atomic layer in the substrate is fixed and the next few atomic layers are set to be velocity-scaling layers during the deposition process. The periodic boundary conditions are imposed in the horizontal directions. A single cluster with no velocity is deposited on the substrate. The simulations are performed at different temperatures of the clusters and substrate and for different sizes of clusters. How the morphological transition of the deposited nanostructures is affected by these parameters is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jensen, P., Rev. Mod. Phys. 71, 1695 (1999).Google Scholar
2. Yamada, I., Inokawa, H., and Takagi, T., J. Appl. Phys. 56, 2746 (1984).Google Scholar
3. Haberland, H., Karrais, M., Mall, M., and Thurner, Y., J. Vac. Sci. Technol. A10, 3266 (1992).Google Scholar
4. Haberland, H., Insepov, Z., and Moseler, M., Phys. Rev. B 51, 11061 (1995).Google Scholar
5. Melinon, P., Jensen, P., Hu, J. X., Hoareau, A., Cabaud, B., Treilleux, M., and Guillot, D., Phys. Rev. B 44, 12562(1991).Google Scholar
6. Schaefer, D. M., Patil, A., Andres, R. P., and Reifenberger, R., Phys. Rev. B 51, 5322 (1995).Google Scholar
7. Goldby, I. M., Kuipers, L., von Issendorff, B., and Palmer, R. E., Appl. Phys. Lett. 69, 2819 (1996).Google Scholar
8. Yoon, B., Akulin, V. M., Cahuzac, Ph., Carlier, F., de Frutos, M., Masson, A., Mory, C., Colliex, C., Bréchignac, C., Surf. Sci. 443, 76 (1999).Google Scholar
9. Hou, Q., and Hou, M., Bardotti, L., Prével, B., Mélinon, P., Perez, A., Phys Rev. B 62, 2825 (2000).Google Scholar
10. Bardotti, L., Prével, B., Mélinon, P., Perez, A., Hou, Q., and Hou, M., Phys Rev. B 62, 2835 (2000).Google Scholar
11. Pauwels, B., Van Tendeloo, G., Bouwen, W., Theil Kuhn, L., Lievens, P., Lei, H., and Hou, M., Phys. Rev. B 62, 10383 (2000).Google Scholar
12. Lee, S. -C., Hwang, Nong M., Yu, B. D., Kim, D. -Y., J. Cryst. Growth 223, 311 (2001).Google Scholar
13. Johnson, R. A., Phys. Rev. B 37, 3924 (1988).Google Scholar