Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-24T04:44:38.264Z Has data issue: false hasContentIssue false

Molecular Simulation of Water Confined in Nanoporous Ca-silica

Published online by Cambridge University Press:  31 January 2011

Patrick A Bonnaud
Affiliation:
bonnaud@cinam.univ-mrs.fr, CNRS, CINaM, Marseille, France
Benoît A Coasne
Affiliation:
bcoasne@lpmc.univ-montp2.fr, CNRS, Institut Charles Gerhardt Montpellier, Montpellier, France
Roland J-M Pellenq
Affiliation:
Pellenq@cinam.univ-mrs.frpellenq@MIT.edu, CNRS, CINaM, Marseille, France
Get access

Abstract

This paper reports on a molecular simulation study of the thermodynamics, structure and dynamics of water confined at ambient temperature in charged silica nanopores of a width H = 10 and 20 Å. The adsorption isotherms for water resemble those observed for experimental samples; the adsorbed amount increases continuously in the multilayer adsorption regime until a jump occurs due to capillary condensation of the fluid within the pore. Strong layering of water in the vicinity of the silica surfaces is observed as marked density oscillations are seen up to 8 Å from the surface in the density profiles for confined water. Our results also indicate that the Ca2+ counterions remain in a space close to the silica surface whatever the pore width and the adsorbed amount of water. For all pore sizes and adsorbed amounts, the self-diffusivity of confined water is lower than the bulk due to the strong hydrophilic nature of the pore surface. Our results also suggest that the self-diffusivity of confined water is sensitive to the adsorbed amount of water molecules.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Verdaguer, A. Sacha, G. M. Bluhm, H. and Salmeron, M. 2006 Chem. Rev. 106 1478.Google Scholar
2 Stanley, H. E. 2009 Z. Phys. Chem. 223 939.Google Scholar
3 Alba-Simionesco, C., Coasne, B. Dosseh, G. Dudziak, G. Gubbins, K. E. Radhakrishnan, R. and Sliwinska-Bartkowiak, M. 2006 J. Phys.: Condens. Matter 18 R15.Google Scholar
4 Bonnaud, P. A. Coasne, B. and Pellenq, R. J.-M. 2009 J. Phys.: Condens. Matter (submitted).Google Scholar
5 Lee, S. H. and Rossky, P. J. 1994 J. Chem. Phys. 100 3334.Google Scholar
6 Spohr, E. Trokhymchuck, A. and Henderson, D. 1998 J. Electroanal. Chem. 450 281.Google Scholar
7 Argyris, D. Cole, D. R. and Striolo, A. 2009 Langmuir 25 8025.Google Scholar
8 Castrillón, S. R.-V., Giovambattista, N. Aksay, I. A. and Debenedetti, P. G. 2009 J. Phys. Chem. B. 113 7973.Google Scholar
9 Argyris, D. Tummala, N. R. and Striolo, A. 2008 J. Phys. Chem. C 112 13587.Google Scholar
10 Rovere, M. Ricci, M. A. Vellati, D. and Bruni, F. 1998 J. Chem. Phys. 108 9859.Google Scholar
11 Spohr, E. Hartnig, C. Gallo, P. and Rovere, M. 1999 J. Mol. Liq. 80 165.Google Scholar
12 Hartnig, C. Witschel, W. Spohr, E. Gallo, P. Ricci, M. A. Rovere, M. 2000 J. Mol. Liq. 85 127.Google Scholar
13 Gallo, P. Ricci, M. A. and Rovere, M. 2002 J. Chem. Phys. 116 342.Google Scholar
14 Gallo, P. Rovere, M. and Spohr, E. 2000 J. Chem. Phys. 113 11324.Google Scholar
15 Brovchenko, I. V. Geiger, A. and Paschek, D. 2001 Fluid Phase Equil. 183-184 331.Google Scholar
16 Brovchenko, I. and Geiger, A. 2002 J Mol. Liq. 96-97 195.Google Scholar
17 Shirono, K. and Daiguji, H. 2007 J. Phys. Chem. C 111 7938.Google Scholar
18 Puibasset, J. and Pellenq, R. J.-M. 2004 J. Phys: Cond. Matter 16 S5329.Google Scholar
19 Puibasset, J. and Pellenq, R. J.-M. 2003 J. Chem. Phys. 118 5613.Google Scholar
20 Puibasset, J. and Pellenq, R. J.-M. 2003 J. Chem. Phys. 119 9226.Google Scholar
21 Agamalian, M. Drake, J. M. Sinha, S. K. and Axe, J. D. 1997 Phys. Rev. E 55 3021.Google Scholar
22 Bellissent-Funel, M.-C., Longeville, S. Zanotti, J. M. Chen, S. H. 2000 Phys. Rev. Lett. 85 3644.Google Scholar
23 Zanotti, J.-M. Bellissent-Funel, M.-C. and Chen, S.-H. 2005 Europhys. Lett. 71 91.Google Scholar
24 Zanotti, J.-M. Bellisent-Funel, M.-C., Chen, S.-H. and Kolesnikov, A. I. 2006 J. Phys.: Condens. Matter 18 S2299.Google Scholar
25 Tarasov, V. F. Chemerisov, S. D. and Trifunac, A. D. 2003 J. Phys. Chem. B 107 1293.Google Scholar
26 Sachs, J. N. Petrache, H. I. Zuckerman, D. M. Woolf, T. B. 2003 J. Chem. Phys. 118 1957.Google Scholar
27 Shirono, K. Tatsumi, N. and Daiguji, H. 2009 J. Phys. Chem. B 113 1041.Google Scholar
28 Tang, Y. W. Chan, K.-Y. and Szalai, I. 2004 J. Phys. Chem. B 108 18204.Google Scholar
29 Spohr, E. 2002 Solid State Ionics 150 1.Google Scholar
30 Cazade, P.-A. Dweik, J. Coasne, B. Henn, F. and Palmeri, J. 2010 J. Am. Chem. Soc. (to be submitted): Structure and dynamics of electrolyte solutions confined in nanopores.Google Scholar
31 Coasne, B. and Pellenq, R. J.-M. 2004 J. Chem. Phys. 120 (6) 2913.Google Scholar
32 Iarlori, S. Ceresoli, D. Bernasconi, M. et al 2001 J. Phys. Chem. B 105 8007.Google Scholar
33 Kjellander, R. Marèelja, S. and Quirk, J. P. 1988 J. Coll. Interf. Sci. 126 194.Google Scholar
34 Berendsen, H. J. C. Postma, J. P. M. Gunsteren, W. F. Van and Hermans, J. 1981 in Intermolecular Forces ( ed. Pullman, B., Reidel, Dordrecht) p. 331.Google Scholar
35 Koneshan, S. Rasaiah, J. C. Lynden-Bell, R. M., Lee, S. H. 1998 J. Phys. Chem. B 102 4193.Google Scholar
36 Pellenq, R. J.-M. and Nicholson, D. J. 1994 J. Phys. Chem. 98 13339.Google Scholar
37 Pellenq, R. J.-M. and Levitz, P. E. 2002 Mol. Sim. 27 353.Google Scholar
38 Stone, A. 1996 The Theory of Intermolecular Forces (Oxford: Clarendon).Google Scholar
39 Coasne, B. Galarneau, A. Renzo, F. Di and Pellenq, R. J.-M. 2009 Phys. Chem. Chem. Phys. (to be submitted).Google Scholar
40 Nicholson, D. and Parsonage, N. G. 1982 Computer Simulation and the Statistical Mechanics of Adsorption (Academic Press: London).Google Scholar
41 Allen, M. P. and Tildesley, D. J. 1987 Computer Simulation of Liquids (Oxford: Clarendon).Google Scholar
42 Frenkel, D. and Smit, B. 2002 Understanding Molecular Simulation: From Algorithms to Applications (2nd Ed., Academic Press: London).Google Scholar
43 Errington, J. R. Kiyohara, K. Gubbins, K. E. Panagiotopoulos, A. Z. 1998 Fluid Phase Equilibria 150-151 33.Google Scholar
44 Boulougouris, G. C. Economou, I. G. and Theodorou, D. N. 1998 J. Phys. Chem. B 102 1029.Google Scholar
45 Vorholz, J. Harismiadis, V. I. Rumpf, B. Panagiotopoulos, A. Z. and Maurer, G. 2000 Fluid Phase Equilibria 170 203.Google Scholar
46 Pellenq, R. J.-M. and Nicholson, D. 1995 Langmuir 11 (5) 1626.Google Scholar
47 Gelb, L.D. 2002 Mol. Phys. 100 (13) 2049.Google Scholar
48 Coasne, B. and Pellenq, R. J.-M. 2004 J. Chem. Phys. 121 (8) 3767.Google Scholar
49 Gelb, L. D. and Gubbins, K. E. 1998 Langmuir 14 2097.Google Scholar
50 Pellenq, R. J.-M. and Levitz, P.E. 2001 Molecular Simulation 27 353.Google Scholar
51 Evans, D. J. 1997 J. Mol. Phys. 34 317.Google Scholar
52 Takahara, S., Nakano, M.., Kittaka, S.. et al 1999 J. Phys. Chem. B 103 5814.Google Scholar
53 Gruener, S. Hofmann, T. Wallacher, D. et al 2009 Phys. Rev. E 79 067301.Google Scholar
54 Desbiens, N. Boutin, A. and Demachy, I. 2005 J. Phys. Chem. B 109 24071.Google Scholar
55 Puibasset, J. and Pellenq, R. J.-M. 2008 J. Phys. Chem. B 112 6390.Google Scholar
56 Burgess, C. G. V.; Everett, D. H.; Nuttall, S. 1990 Langmuir 6 1734.Google Scholar
57 Morishige, K. Fujii, H. Uga, M. Kinukawa, D. 1997 Langmuir 13 3494.Google Scholar
58 Morishige, K. Ito, M. 2002 J. Chem. Phys. 117 8036.Google Scholar
59 Trens, P. Tanchoux, N. Galarneau, A. Brunel, D. et al 2005 Langmuir 21 8560.Google Scholar
60 Nakanishi, H. Fisher, M. 1983 J. Chem. Phys. 78 3279.Google Scholar
61 Evans, R. Marconi, U. Marini Bertollo, Tarazona, P. 1986 J. Chem. Phys. 84 2376.Google Scholar
62 Ball, P. C. and Evans, R. 1989 Langmuir 5 714.Google Scholar
63 Woo, H. J. and Monson, P. A. 2003 Phys. Rev. E 67 041207.Google Scholar
64 Coasne, B. Gubbins, K. E. Pellenq, R. J.-M. 2005 Adsorption 11 289.Google Scholar
65 Pellenq, R. J.-M. Coasne, B. Denoyel, R. Puibasset, J. 2006 In Studies in Surface Science and Catalysis; in press; Elsevier Science.Google Scholar
66 Coasne, B. Gubbins, K. E. and Pellenq, R. J.-M. 2004 Part. Part. Syst. Charact. 21 149.Google Scholar
67 Sarkisov, L. Monson, P. A. 2001 Langmuir 17 7600.Google Scholar
68 Ravikovitch, P. I. and Neimark, A. V. 2002 Langmuir 18 1550.Google Scholar
69 Vishnyakov, A. and Neimark, A. V. 2003 Langmuir 19 3240.Google Scholar
70 Voort, P. Van Der, Ravikovitch, P. I. Jong, K. P. De, Benjelloun, M. Bavel, E. Van, Janssen, A. H., Neimark, A. V. Weckhuysen, B. M. and Vansant, E. F. 2002 J. Phys. Chem B 106 5873.Google Scholar
71 Ravikovitch, P. I. and Neimark, A. V. 2002 Langmuir 18 9830.Google Scholar
72 Coasne, B. Galarneau, A. Renzo, F. Di, Pellenq, R. J.-M. 2007 J. Phys. Chem. C 111 15759.Google Scholar
73 Evans, R. 1990 J. Phys.: Condens. Matter 2 8989.Google Scholar
74 Gordillo, M. C. and Martí, J. 2002 J. Chem. Phys. 117 3425.Google Scholar
75 Martí, J., Nagy, G. Gordillo, M. C. and Guàrdia, E. 2006 J. Chem. Phys. 124 094703.Google Scholar
76 Striolo, A. Chialvo, A. A. Cummings, P. T. and Gubbins, K. E. 2003 Langmuir 19 8583.Google Scholar
77 Lu, L. and Berkowitz, L. 2006 J. Chem. Phys. 124 (10) 101101.Google Scholar
78 Schoch, R. B. Han, J. and Renaud, P. 2008 Rev. Mod. Phys. 80 839.Google Scholar
79 Coasne, B. Jain, S. K. and Gubbins, K. E. 2006 Mol. Phys. 104 (22-24) 3491.Google Scholar
80 Schoen, M. Cushman, J. H. Diestler, D. J. and Rhykerd, C. L. 1988 J. Chem. Phys. 88 1394.Google Scholar
81 Diestler, D. J. Schoen, M. Hertzner, A. W. and Cushman, J. H. 1991 J. Chem. Phys. 95 5432.Google Scholar
82 Krishnan, S. H. and Ayappa, K. G. 2003 J. Chem. Phys. 118 690.Google Scholar
83The latter value is 6% larger than that obtained by Mahoney and Jorgensen, D0 = 3.85 × 10-5 cm2.s-1 [J. Chem. Phys. 114, 363, 2001] and 3% lower than that obtained by Berendsen et al., D0 = 4.3 × 10-5 cm2.s-1 [J. Phys. Chem., 91, 6269, 1987]. These small discrepancies are due to differences in the density and box size considered in these simulations.Google Scholar
84 Pellenq, R. J.-M. Kushima, A. Shahsavari, R. Vliet, K. J. Van, Buehler, M. J. Yip, S. and Ulm, F.-J. 2009 PNAS (Early edition).Google Scholar