Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-17T23:14:16.119Z Has data issue: false hasContentIssue false

Molecular Relaxation of the Side Groups in Poly(vinyl alcohol) Films in GHz Frequency Range

Published online by Cambridge University Press:  16 March 2015

Siva Kumar-Krishnan
Affiliation:
Cinvestav del IPN, Unidad Querétaro, Libramiento Norponiente 2000, Querétaro, QRO 76230, MEXICO.
Olimpia L. Arias de Fuentes
Affiliation:
Cinvestav del IPN, Unidad Querétaro, Libramiento Norponiente 2000, Querétaro, QRO 76230, MEXICO.
Evgen Prokhorov
Affiliation:
Cinvestav del IPN, Unidad Querétaro, Libramiento Norponiente 2000, Querétaro, QRO 76230, MEXICO.
Araceli Mauricio‐Sanchez
Affiliation:
Cinvestav del IPN, Unidad Querétaro, Libramiento Norponiente 2000, Querétaro, QRO 76230, MEXICO.
Moisés Oviedo Mendoza
Affiliation:
Cinvestav del IPN, Unidad Querétaro, Libramiento Norponiente 2000, Querétaro, QRO 76230, MEXICO.
Gabriel Luna-Barcenas
Affiliation:
Cinvestav del IPN, Unidad Querétaro, Libramiento Norponiente 2000, Querétaro, QRO 76230, MEXICO.
Get access

Abstract

Poly(vinyl alcohol) (PVA) is a synthetic polymer which has been used in a wide variety of applications. This polymer has been extensively investigated by a large number of techniques to shed light about its physical and chemical properties. In this work, for fist time, high frequency (1x109-3x109 Hz) relaxation process has been observed in the PVA films in the temperature range of -100C to +1200C. This relaxation exhibits negative activation energy below glass transition temperature Tg and at higher temperature positive activation energy with subsequent saturation. Upon cooling the activation energy was negative again. This high frequency relaxation process and its temperature dependence can be attributed to the interaction of the bounded water and the changes of energy and freedom of movement of OH side molecular chains groups. This conclusion has been supported by in situ FTIR measurements. A possible scenario of this relaxation and dynamics of molecular motion has been proposed.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Rhim, J. W., Park, H. B., Lee, C. S., Jun, J. H., Kim, D. S., , Y. and Lee, M., J. Membrane Sci. 238, 143151 (2004).CrossRefGoogle Scholar
Paradossi, G., Cavalieri, F., Chiessi, E., Spagnoly, C. and Cowman, M., J. Mat. Sci. 14, 687691 (2003).Google Scholar
Hasimi, A., Stavropoulou, A., Papadokostaki, K. G. and Sanopoulou, M., European Polymer J. 44, 40984107 (2008).CrossRefGoogle Scholar
Bergo, P., Moraes, I. C. F. and Sobral, P. J. A., Food Biophysics 7, 354361 (2012).CrossRefGoogle Scholar
Gonzalez-Campos, J. B., Garcia-Carvajal, Z. Y., Prokhorov, E. et al. . J. Appl Polymer Sci. 125, 40824090 (2012).CrossRefGoogle Scholar
Miyazaki, T., Hoshiko, A., Akasaka, M., Shintani, T., and Sakurai, S., Macromolecules 39, 29212929 (2006).CrossRefGoogle Scholar
Cendoya, I., Lopez, D., Alegrıa, A., and Mijangos, C., J Polym Sci. B: Polym Phys. 39, 19681975 (2001).CrossRefGoogle Scholar
Jadhav, N. R., Gaikwad, V. L, Nair, K. J. and Kadam, H. M., Asian J. Pharm. 3, 8289 (2009).CrossRefGoogle Scholar
Kreme, F. and Schonhals, A., Broadband dielectric spectroscopy, (Springer-Verlag, Berlin, 2003).CrossRefGoogle Scholar
Runt, J. P. and Fitzgerald, J. J.. Dielectic spectroscopy of polymetric materials (Americal Chemistry Society, Washington, DC, 1997).Google Scholar
Christie, J. H., Krenek, S. H. and Woodhead, I. M.. Biosystems. Eng. 102, 143152 (2009).CrossRefGoogle Scholar
Satokawa, Y. and Shikata, T., Macromolecules 41, 29082913 (2008).CrossRefGoogle Scholar
Shinyashiki, N., Yagihara, S., Arita, I. and Mashimo, S., J. Phys. Chem. B 102, 32493251 (1998).CrossRefGoogle Scholar
Sengwa, R.J. and Kaur, K., Polym Int. 49, 13141320 (2000).3.0.CO;2-8>CrossRefGoogle Scholar
Yeow, Y. K., Abbas, Z., Khalid, K. and Rahman, M. Z. A., Am. J. Applied Sci., 7, 270276 (2010).CrossRefGoogle Scholar
Betzabe Gonzalez-Campos, J., Prokhorov, E., Sanchez, I. C. and Gabriel Luna-Barcenas, J., J. Nanomaterials, 925750 (2012).Google Scholar
Uda, A., Morita, S. and Ozaki, Y., Polymer, 54, 21302137 (2013).CrossRefGoogle Scholar
Thomas, P. S., Guerbois, J.P., Russell, G. F. and Briscoe, B. J., J. Thermal Anal. & Calorimetry, 64, 501508 (2001).CrossRefGoogle Scholar
Harvey, S. C. and Hoekstra, P., J. Phys. Chem. 76, 29872994 (1972).CrossRefGoogle Scholar
Grigera, J. R., Vericat, F., Hallenga, K. and Berendsen, H. J. C., Biopolym. 18, 3545 (1979).CrossRefGoogle Scholar
Marzec, E., Kubisz, L. and Jaroszyk, F., Int. J. Biolog. Macromol. 18, 2731 (1996).CrossRefGoogle Scholar
Papaioannou, J. C., Papadimitropoulos, N. D. and Mavridis, I. M., Mol. Phys. 97, 611627. (1999).Google Scholar
Pissis, P., Anagnostopoulou-Konsta, A., Apekis, L., Daoukaki-Diamanti, D. and Christodoulides, C.. J. Non-Cryst.Solids. 131, 11741181 (1991).CrossRefGoogle Scholar