Skip to main content Accessibility help

Molecular relaxation in Chitosan films in GHz frequency range

  • Siva Kumar-Krishnan (a1), Evgen Prokhorov (a1) and Gabriel Luna-Barcenas (a1)


The molecular relaxations behavior of chitosan (CS) films in the wide frequency range of 0.1-3x109 Hz (by using three different impedance analyzers) have been investigated in the temperature range of -100C to 120°C using Dielectric Spectroscopy (DS). Additionally to the low frequency molecular relaxations such as α and β relaxations, for the first time, high frequency (1-3 GHz) relaxation process has been observed in the chitosan films. This relaxation exhibits Arrhenius-type dependence in the temperature range of -100 C to 54°C with negative activation energy -2.7 kJ/mol. At temperatures above 54°C, the activation energy changes from -2.7 kJ/mol to +4.4 kJ/mol. Upon cooling, the activation energy becomes negative again with a value of -1.2 kJ/mol. The bound water between chitosan molecules strongly modifies molecular motion and the relaxation spectrum, giving rise to a new relaxation at the frequency at ca. 1 GHz. In situ FTIR analysis has shown that this relaxation related to the changes in vibration of the –OH, NH and –CO functional groups.



Hide All
1. Gonzalez-Campos, J.B., Prokhorov, E., Luna Barcenas, G., Mendoza-Galvan, A., Sanchez, I.C., Nuno-Donlucas, S.M., Garcia-Gaitan, B., Kovalenko, Y., J. Polym Sci. Part B: Polym Phys. 47, 22592271 (2009).
2. Kobaisi, M. Al, Murugaraj, P., Mainwaring, D.E., J. Polym Sci Part B: Polym Phys. 50, 403414 (2012).
3. Viciosa, M.T., Dionisio, M., Mano, J.F., Biopolymer 81, 149159 (2006).
4. Fukuda, T., Takada, A., Miyamoto, T., In Cellulosic Polymers, Blends and Composites; Gilbert, RD, Ed, Hanser: New York (1994).
5. Montes, H., Mazeau, K., Cavaille, J.Y., Macromolecules 30, 69776984 (1997).
6. Nogales, A., Ezquerra, T.A., Rueda, D.R., Retuert, M., J. Colloid Polym Sci. 275, 419425 (1997).
7. Radloff, D., Boeffel, C., Spiess, H.W., Macromolecules 29, 15281534 (1996).
8. Butler, M.F., Cameron, R.E., Polymer 41, 22492263 (2000).
9. Maissner, D., Einfeldt, J., Wasniewski, A.K., J. Non- Cryst. Solids 320, 4055 (2003).
10. Einfeldt, J., Maissner, D., Kwasniewski, A., Prog. Polym. Sci. 26, 14191472 (2001).
11. Harvey, S.C., Hoekstra, P., J. Phys. Chem. 76, 29872993 (1972).
12. Rrey, W.S., Evans, J.T.E., Hitzrot, L.H., J. Colloid and Interface Sci. 26, 306316 (1968).
13. Marzec, E., Kubisz, L., Jaroszyk, F., Int. J. Biological Macromolecules 18, 2731 (1996).
14. Hoekstra, P., Doyle, W.T., J. Colloid and Interface Sci. 36, 513521(1970).
15. Murugaraj, P., Mainwaring, D.E., Tonkin, D.C., Kobaisi, M. Al, J. Appl. Polymer Sci. 120, 13071315 (2011).
16. Noriega, E.S., Subramanian, A., Int. J. Carbohydrate Chem. 2011, 11551168 (2011).
17. Zawadzki, J., Kaczmarek, H., Carbohydrate Polymers 80, 394400 (2010).


Related content

Powered by UNSILO

Molecular relaxation in Chitosan films in GHz frequency range

  • Siva Kumar-Krishnan (a1), Evgen Prokhorov (a1) and Gabriel Luna-Barcenas (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.