Hostname: page-component-7479d7b7d-767nl Total loading time: 0 Render date: 2024-07-11T04:28:17.812Z Has data issue: false hasContentIssue false

Molecular Orbital Study of Apatite Nucleation at Silica Bioceramic Surfaces

Published online by Cambridge University Press:  10 February 2011

N. Sahai
Affiliation:
Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742.
J. A. Tossell
Affiliation:
Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742.
Get access

Abstract

We have used Hartree-Fock molecular orbital calculations to model the interactions of Ca2+, H2PO41-, HPO42- and H2O with bioceramic reactive surface sites represented by [Si3O6H6] to determine the reaction sequence for apatite precipitation at bioceramic surfaces. By comparing predicted reaction energies, viberational frequencies, abd NMR shifts for 29Si, and 31P with experimental values we were able to identify stable intermediates during reaction progress.

At the pH of blood, our calculations predict that (i) the 3-ring is the active surface site, (ii) formation of [SiO-Ca-OPO3H] bonds is energetically preferred over direct Si-O-P bonds, and (iii) an acidic precursor with bidentate Ca>OPO3H bonds, [Si3O6H5CaHPO4(H2O)3]1-, nucleates rapidly (minutes to 1 hour) at the bioceramic surface. Predicted precursor complex, [Si3O6H5CaHPO4(H2O)3]1-, and young bone share unique IR bands at 631 and 1125–1145 cm-1. Going beyond the scope of our calculations, a literature survey suggests that subsequent slow (1–2 weeks) aggregation of oligomers by H-bonds between surface Si-OH and HPO4 groups results in apatite formation. Analogously, carboxyl and phosphoryl groups on sialoprotein and hydroxyl-terminations on collagen may provide the nucleation and H-bonding sites for natural bone formation in the absence of the bioceramic.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Glimcher, M. J. in Metabolic Bone Disease and Clinically Related Disorder, 3rd ed. (Academic Press, New York, 1998), p. 2350.Google Scholar
2. Hench, L. L., Bioceramics 3, p. 43 (1990).Google Scholar
3. Hayakawa, S., lida, S. T., Ohtsuki, C., and Osaka, A., Phys. Chem. Glasses 37, p. 188 (1996).Google Scholar
4. West, J. H., and Hench, L. L. in Bioceramics, 5, edited by Yamamuro, T., Kokubo, T. and Nakamura, T. (Kobunshi Kankokai, Kyoto, 1991), p. 75.Google Scholar
5. Wallace, S., West, J. K., and Hench, L. L. J. Non-Cryst. Solids 152, p. 101 (1993).Google Scholar
6. Schmidt, M. W. et al. J. Comput. Chem. 15, p. 1347 (1993).Google Scholar
7. Stevens, W. J., Krauss, M., Basch, H., and Jansen, P. G. Canad. J. Chem. Phys. 70, p. 612 (1992).Google Scholar
8. Rashin, A. A. and Honig, B. J. Phys. Chem. 89, p. 5588 (1985).Google Scholar
9. Frisch, M. J. et al. Gaussian 94, Rev. B.3, Gaussian Inc., Pittsburgh, PA (1995).Google Scholar
10. Tawa, G. J., Topol, I. A., Burt, S. K., Caldwell, R. A., and Rashin, A. A., J. Chem. Phys. 109, p. 4852 (1998).Google Scholar
11. Naim, A. Ben, J., A. Y. and Marcus, J. Chem. Phys. 81, p. 2016 (1984).Google Scholar
12. Wolinski, K., Hinton, J. F., and Pulay, P. J. Am. Chem. Soc., 112, p. 8251 (1992).Google Scholar
13. Bode, B. M. and Gordon, M. S. J. Mol. Graphics Mod. 16, p. 133 (1998).Google Scholar
14. Sahai, N. and Tossell, J. A. J. Phys. Chem. B, in review (1999).Google Scholar
15. Nelson, C. and Tallant, D. R. Phys. Chem. Glasses 25, p. 31(1984).Google Scholar
16. Yang, W.-H. and Kirkpatrick, R. J., R. J. Commun. Am. Ceram. Soc. 69 p. C222 (1986).Google Scholar
17. Szu, S.-P., Klein, L. C., and Greenblatt, M. J. Non-Cryst. Solids 143, p. 21 (1992).Google Scholar
18. Galliano, P. G., Porto-Lopez, J. M., Varetti, E. L., Sobrados, I. and Sanz, J. Mat. Res. Bull. 29 p. 1297 (1994).Google Scholar
19. Roberts, J. E., Bonar, L. C., Griffin, , and Glimcher, M. J. Calcif. Tissue Int. 50, p. 42 (1992).Google Scholar
20. Wu, Y., Glimcher, M. J., Rey, C., and Ackerman, J. L. J. Mol. Biol. 244, p. 423 (1994).Google Scholar
21. Galeener, F. L., Solid State Commun. 44, p. 1037 (1982).Google Scholar
22. Brinker, C. J., Tallant, D. R., Roth, E. P., and Ashley, C. S. J. Non-Cryst. Solids 82, p. 17 (1986).Google Scholar
23. Rey, C., C., Shimizu, M., Collins, B., and Glimcher, M. J. Calcif. Tissue Int 46, p. 384 (1991)Google Scholar
24. Rey, C., C., Shimizu, M., Collins, B., and Glimcher, M. J. Calcif. Tissue Int 49, p. 383 (1991)Google Scholar
25. Rehman, I. and Bonfield, W. Bioceramics 8, edited by. Hench, L. L. and Greenspan, D., (Elsevier Science Ltd, 1995) p. 163.Google Scholar
26. Pereira, M. M., Clark, A. E., and Hench, L. L. J. Am. Ceram. Soc. 78, p. 2463 (1995).Google Scholar
27. Hunter, G. K. and Goldberg, H. A. Biochem. J. 302, p. 175 (1994).Google Scholar
28. Cho, S. B., Nakanishi, K., Kokubo, T., Soga, N., Ohtsuki, C., and Nakamura, T. J. Biomed. Mats. Res. (Appl. Biomat.) 33, p. 145 (1996).Google Scholar