Skip to main content Accessibility help
×
Home

Molecular Dynamics Study of Size Dependence of Combustion of Aluminum Nanoparticles

  • Ying Li (a1), Richard Clark (a1), Aiichiro Nakano (a1), Rajiv K. Kalia (a1) and Priya Vashishta (a1)...

Abstract

Oxidation dynamics of three different sizes (26, 36 and 46 nm) of single aluminum nanoparticle (ANP) in oxygen environment are studied using multimillion-atom reactive molecular dynamics simulations. In the simulation, each aluminum nanoparticle is coated with an amorphous alumina shell of the same thickness (3 nm), and is ignited by heating the nanoparticle to 1100 K. The metallic aluminum and ceramic alumina are modeled by the Voter- Chen embedded atom model and the interatomic potential by Vashishta et al., respectively. Energy release rate and atomistic-level details of combustion of these single aluminum nanoparticles are investigated, along with the effect of nanoparticle size. The onset temperature of shell Al ejection is found to be independent of the ANP size, whereas the onset time of ejection and the time delay to the highest temperature change rate dT/dt depend on the size.

Copyright

References

Hide All
1. Levitas, V. I., Combust Flame 156(2), 543546 (2009).
2. Asay, B. W., Son, S. F., Busse, J. R. and Oschwald, D. M., Aip Conf Proc 706, 827830 (2004).
3. Pantoya, M. L. and Granier, J. J., Propell Explos Pyrot 30(1), 5362 (2005).
4. Kwon, Y. S., Gromov, A. A., Ilyin, A. P., Popenko, E. M. and Rim, G. H., Combust Flame 133(4), 385391 (2003).
5. Granier, J. J. and Pantoya, M. L., Synthesis, Characterization and Properties of Energetic/Reactive Nanomaterials 800, 173178 (2004).
6. Rai, A., Park, K., Zhou, L. and Zachariah, M. R., Combust Theor Model 10(5), 843859 (2006).
7. Wang, S. F., Yang, Y. Q., Yu, H. N. and Dlott, D. D., Propell Explos Pyrot 30(2), 148155 (2005).
8. Granier, J. J. and Pantoya, M. L., Combust Theor Model 8(3), 555565 (2004).
9. Campbell, T. J., Aral, G., Ogata, S., Kalia, R. K., Nakano, A. and Vashishta, P., Phys Rev B 71(20) (2005).
10. Wang, W. Q., Clark, R., Nakano, A., Kalia, R. K. and Vashishta, P., Appl Phys Lett 96(18) (2010).
11. Levitas, V. I., Pantoya, M. L. and Dikici, B., Appl Phys Lett 92(1) (2008).
12. Sako, S., Ohshima, K. and Fujita, T., J Phys Soc Jpn 59(2), 662666 (1990).
13. Rai, A., Lee, D., Park, K. H. and Zachariah, M. R., J Phys Chem B 108(39), 1479314795 (2004).
14. Yang, Y., Wang, S., Sun, Z. and Dlott, D. D., Journal of Applied Pysics 95(7), 10 (2004).
15. Voter, A. F. and Chen, S. P., presented at the MRS Symp. Proc., 1987 (unpublished).
16. Vashishta, P., Kalia, R. K., Nakano, A. and Rino, J. P., Journal of Applied Physics 103, 13 (2008).
17. Wang, W., Ph.D. thesis, University of Southern California, 2008.
18. Park, K., Lee, D., Rai, A., Mukherjee, D. and Zachariah, M. R., J Phys Chem B 109(15), 72907299 (2005).

Keywords

Molecular Dynamics Study of Size Dependence of Combustion of Aluminum Nanoparticles

  • Ying Li (a1), Richard Clark (a1), Aiichiro Nakano (a1), Rajiv K. Kalia (a1) and Priya Vashishta (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed