Hostname: page-component-788cddb947-2s2w2 Total loading time: 0 Render date: 2024-10-13T15:21:46.340Z Has data issue: false hasContentIssue false

Molecular Dynamics Simulations of Diamond and Carbon Clusters

Published online by Cambridge University Press:  22 February 2011

Bernard A. Pailthorpe*
Affiliation:
Department of Applied Physics, University of Sydney, NSW, 2006, Australia; Australian Nuclear Science and Technology Organisation; and San Diego Supercomputer Center, USA.
Get access

Abstract

The synthesis of amorphous diamond thin films has been studied previously by classical molecular dynamics computer simulations utilising Stillinger Weber potentials, reparameterised to describe bonding in carbon. The simulations provided insight into the surface processes occuring during thin film growth and showed the role of stress and an energy window in promoting amorphous diamond formation from carbon ion beams. However, more realistic simulations require a full treatment of quantum effects to describe adequately chemical bonding and electronic properties. Local Density Functional theories and the Car-Parrinello molecular dynamics algorithm have proved to be successful and offer a route to first-principles materials design. We are using these techniques to investigate bonding and structure in small carbon clusters and to study doping of diamond required to fabricate electronic devices. Results are presented for a novel, three dimensional, neutral carbon-11 cluster which was studied by ab initio molecular dynamics simulations confirming that, while the 3D structure is stable, the ring is the lower energy structure. However, the 3D structure deforms rapidly to a more open structure of the same topology which is dynamically stable during simulated annealing up to 2000K. Higher quality calculations indicate that new, lower symmetry bonding arrangements form also. Attempts to enclose lithium or boron atoms within the Cl 1 cage caused heating and ultimate rupture into smaller fragments.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Angus, J.C. and Hayman, C.C., Science 241, 913 (1988).Google Scholar
2 Yarbrough, W. A and Messier, R., Science 247, 688 (1990).Google Scholar
3 Koshland, D. E. Jr., Science 250, 1637 (1990).Google Scholar
4 Mckenzie, D. R., Muller, D., Pailthorpe, B. A., Wang, Z.H., Kravtchinskaia, E., Segal, D., Lukins, P. B. and Swift, P.. Diamond and Related Materials 1, 51 (1991).Google Scholar
5 Mckenzie, D. R., Muller, D. and Pailthorpe, B.A., Phys. Rev. Letts. 67, 773 (1991).Google Scholar
6 Veerasamy, V. S., Amaratunga, G. A. J., Davis, C., Timbs, A. E., Milne, W. I. and Mckenzie, D. R., J. Phys.: Condensed Matter, 5, L169 (1993).Google Scholar
7 Pailthorpe, B.A., J. Appl. Phys. 70, 543 (1991).Google Scholar
8 Knight, P. and Pailthorpe, B.A., MRS Proc. 223 (1991).Google Scholar
9 Gerstner, E. and Pailthorpe, B.A., J. Non-Cryst. Solids (submitted, 1993).Google Scholar
10 Stillinger, F.H. and Weber, T.A., Phys. Rev. B 31, 5262 (1985).Google Scholar
11 Kaukonen, H.-P. and Nieminen, R. M., Phys. Rev. Letts. 68, 620 (1992).Google Scholar
12 Weltner, W. Jr. and van Zee, R. J., Chem. Rev. 89, 1713 (1989).Google Scholar
13 Raghavachari, K. and Binkley, J. S., J. Chem. Phys. 82, 2191 (1987).Google Scholar
14 van Vechten, J. A. and Keszler, D. A., Phys. Rev. B36. 4570 (1987).Google Scholar
15 Martin, J. M. L., Francois, J. P., Gijbels, R. and Almlof, J., Chem. Phys. Letts. 187, 367 (1991).Google Scholar
16 Car, R. and Parrinello, M., Phys. Rev. Letts. 55, 2471 (1985).Google Scholar
17 Remler, D. K. and Madden, P. A., Molec. Phys. 70, 921 (1990).Google Scholar
18 Payne, M. C., Teter, M. P., Allen, D. C., Arias, T. A. and Joannopoulos, J. D., Rev. Mod. Phys. 64, 1045 (1992).Google Scholar
19 Kawai, R. and Weare, J. H., Phys. Rev. Letts. 65, 80 (1990); J .Chem. Phys. 95, 1151 (1991).Google Scholar
20 Bylaska, E. J., Kawai, R. and Weare, J. H., (preprint, 1992).Google Scholar
21 Galli, J., Martin, R. M., Car, R. and Parrinello, M., Phys. Rev. Letts. 60, 204 (1988); 63, 988 (1989); Phys. Rev. B42, 7470 (1990); Science 250, 1547 (1990).Google Scholar
22 Hamman, D. R., Phys. Rev. B40, 2980 (1989).Google Scholar
23 Kleinman, L. and Bylander, D. M., Phys. Rev. Letts. 48, 1425 (1982).Google Scholar
24 Brabec, C. J., Anderson, E. B., et al. Phys. Rev. B46, 7326 (1992).Google Scholar
25 Slater, J. C. and Foster, G. F., Phys. Rev. 94, 1498 (1954).Google Scholar
26 Wang, X. (private communication, 1993).Google Scholar
27 Tomanek, D. and Schluter, M. A., Phys. Rev. Letts. 67, 2331 (1991).Google Scholar
28 Guo, T., Smalley, R. E. and Scuseria, G. E., J. Chem. Phys. 99, 352 (1993).Google Scholar
29 Bernholc, J., Antonelli, A., de Sole, T. M., Bar-Yam, Y. and Pantelides, S. T., Phys. Rev. Letts. 61, 2689 (1988).Google Scholar
30 Kajihara, S. A., Antonelli, A., Bernholc, J. and Car, R., Phys. Rev. Letts. 66, 2010 (1991).Google Scholar