Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-19T18:43:29.260Z Has data issue: false hasContentIssue false

Molecular Dynamics of Alkanes in Faujasite Zeolites

Published online by Cambridge University Press:  10 February 2011

L. A. Clark
Affiliation:
Department of Chemical Engineering, Northwestern University, Evanston, IL 60208
G. T. Ye
Affiliation:
Department of Chemical Engineering, Northwestern University, Evanston, IL 60208
A. Gupta
Affiliation:
Department of Chemical Engineering, Northwestern University, Evanston, IL 60208
L. L. Hall
Affiliation:
Department of Chemical Engineering, Northwestern University, Evanston, IL 60208
R. Q. Snurr
Affiliation:
Department of Chemical Engineering, Northwestern University, Evanston, IL 60208
Get access

Abstract

Molecular dynamics simulations of C1 through C14 n-alkanes have been used to elucidate diffusion mechanisms in siliceous faujasite zeolites. Additional simulations of the bulk liquids were conducted to compare the liquid and adsorbed phases. Macroscopic quantities, such as heats of adsorption, diffusivities, and activation energies, were calculated and compare well with experimental values. In addition, the simulations provide detailed information about the mechanisms of alkane diffusion in the confined pores of faujasite.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Kärger, J. and Ruthven, D. M., Diffusion in Zeolites and Other Microporous Solids (Wiley, New York, 1992).Google Scholar
[2] Theodorou, D. N., Snurr, R. Q., and Bell, A. T., in Comprehensive Supramolecular Chemistry: Two- and Three-Dimensional Networks, edited by Alberti, G. and Bein, T. (Pergamon, Oxford, 1996), Vol.7, Chap. 18, pp. 507550.Google Scholar
[3] Goodbody, S. J., Watanabe, K., MacGowan, D., Walton, J. P. R. B., and Quirke, N., J. Chem. Soc. Faraday Trans. 87, 1951 (1991).Google Scholar
[4] Ryckaert, J. P. and Bellemans, A.., Discuss. Faraday Chem. Soc. 66, 95 (1978).Google Scholar
[5] June, R. L., Bell, A. T., and Theodorou, D. N.., J. Phys. Chem. 96, 1051 (1992).Google Scholar
[6] Hriljac, J. A., Eddy, M. M., Cheetham, A. K., Donohue, J. A., and Ray., G. J., Journal of Solid State Chemistry 106, 66 (1993).Google Scholar
[7] Gear, C. W., Numerical Initial Value Problems in Ordinary Differential Equations (Prentice-Hall, Englewood Cliffs, NJ, 1971).Google Scholar
[8] Edberg, R., Evans, D. J., and Morriss, G. P., J. Chem. Phys. 84, 6933 (1986).Google Scholar
[9] Clark, L. A., Ye, G. T., Gupta, A.. Hall, L. L., and Snurr, R. Q., in preparation (1999).Google Scholar
[10] Savitz, S., Siperstein, F., Gorte, R. J., and Myers, A. L., J. Phys. Chem. B 102, 6865 (1998).Google Scholar
[11] Denayer, J. F. M. and Baron., G. V., Adsorption 3, 251 (1997).Google Scholar
[12] Stach, H., Jänchen, J., Thamm., H. Stiebitz, E., and Vetter, R. A., Ads. Sci. Technol. 3, 261 (1986).Google Scholar
[13] Eder, F., Stockenhuber, M., and Lercher., J. A., J. Phys. Chem. B 101, 5414 (1997).Google Scholar
[14] Kärger, J., Pfeifer, H., Rauscher, M., and Walter, A., J.C.S Faraday I 76, 717 (1980).Google Scholar
[15] Eic, M. and Ruthven, D. M., Zeolites 8, 472 (1988).Google Scholar