Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-18T13:07:10.087Z Has data issue: false hasContentIssue false

Molecular Dynamics Modeling of the Mechanical Behavior of Metallic Multilayers

Published online by Cambridge University Press:  15 February 2011

James Belak
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550
David B. Boercker
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550
Get access

Abstract

Constant-stress molecular dynamics simulations are used to study the mechanical properties of equal concentration Cu-Ni (111) metallic multilayers of repeat lengths 0.4–5.0 nm. Uniaxial stress is applied along the close-packed [110] and perpendicular to the close-packed [112] directions within the (111) plane. The observed elastic modulus does not display a super-modulus effect as observed in experimental bulge tests for the biaxial modulus. However, both the average interlayer spacing and the out-of-plane Poisson ratio display anomalous effects for multilayer repeat lengths below about two nanometers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Multilayers: Synthesis, properties, and non-electronic applications, edited by Barbee, T.W. Jr., Spaepen, F., and Greer, L. (Mater. Res. Soc. Symp. Proc. 103, Pittsburgh, Pa 1988).Google Scholar
2 Tsakalakos, T. and Hillard, J.E., J. Appl. Phys. 54, 734 (1983).CrossRefGoogle Scholar
3 Schlesinger, T.E., Cammarata, R.C., Kim, C., Qadri, S.B. and Edelstein, A.S. in Thin Films: Stresses and Mechanical Properties II, edited by Doerner, M.F., Oliver, W.C., Pharr, G.M. and Brotzen, F.R. (Mater. Res. Soc. Symp. Proc. 188, Pittsburgh, Pa, 1990) p. 295.Google Scholar
4 Daw, M.S. and Baskes, Mi., Phys. Rev B 29, 6443 (1984); S.M. Foiles, Phys. Rev. B 32, 3409 (1985).Google Scholar
5 Oh, D.J. and Johnson, R.A. in Atomistic Simulation of Materials: Beyond Pair Potentials, edited by Vitek, V. and Srolovitz, D.J. (Plenum Press, New York, 1989) p. 233.CrossRefGoogle Scholar
6 Johnson, R.A., Phys. Rev. B 39, 12554 (1989).Google Scholar
7 Parrinello, M. and Rahman, A., Phys. Rev. Lett. 45, 1196 (1980); J. Ray, J. Chem. Phys. 79, 5128(1983).Google Scholar
8 Cleveland, C.L., J. Chem. Phys. 89, 4987 (1988).Google Scholar
9 Mei, J. and Fernando, G.W., Phys. Rev. Lett. 66, 1882 (1991).CrossRefGoogle Scholar
10 Epstein, S.G. and Carlson, O.N., Acta Metall. 13, 487 (1965).Google Scholar