Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-23T12:58:19.561Z Has data issue: false hasContentIssue false

Molecular Beam Epitaxy of Superconducting Bismuthates on Various Substrates

Published online by Cambridge University Press:  25 February 2011

E. S. Hellman
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
E. H. Hartford
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
C. D. Brandle
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
G. W. Berkstresser
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
H. P. Jenssen
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA 02139
A. Cassanho
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA 02139
D. Gabbe
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA 02139
Get access

Abstract

We report epitaxial growth of the simple cubic perovskites Ba1-xKxBiO3 and Ba1-xRbxBiO3 on Ba3LaNb3O12, LiBaF3, BaF2, and Al2O3. Films with excellent crystallinity are obtained on the perovskite substrates, LiBaF3, and Ba3LaNb3O12. (1 1 1) or (1 1 0) films can be obtained on {1 1 1} BaF2, depending on the nucleation temperature. Non-epitaxial superconducting films have been grown on Si and on GaAs. At the low growth temperatures used (200–450°C), reactions with the substrates do not pose problems. The choice of substrate not only determines the microstructure of the film, but also plays a role in allowing the film to change its oxygen stoichiometry. Stoichiometry shifting is a pervasive necessity for the synthesis of high Tc thin films.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hammond, R. H. and Bormann, R., Physica C 162–164, 703, (1989).CrossRefGoogle Scholar
2. Hellman, E. S., Hartford, E. H. and Gyorgy, E. M., Appl. Phys. Lett. a 58, 1335 (1991).CrossRefGoogle Scholar
3. Kao, H. L., Kwo, J., Fleming, R. M., Hong, M., Mannaerts, J. P. and Short, K T., unpublished (1991).Google Scholar
4. Norton, M. G., Hellman, E. S., Hartford, E. H. and Carter, C. B., submitted to J. Cryst. Growth. (1991).Google Scholar
5. Hellman, E. S., Hartford, E. H., Werder, D. J. and Fleming, R. M., in High Temperature Superconductors: Fundamental Properties and Novel Materials Processing, edited by Christen, D. K., Narayan, J., Schneemeyer, L. F., (Mater. Res. Soc. Proc. 169, Pittsburgh, PA, 1989), p. 719.Google Scholar
6. Fleming, R. M., Marsh, P., Cava, R. J. and Krajewski, J. J., Phys. Rev. B 38, 7026, (1988).CrossRefGoogle Scholar
7. Rother, H.-J., Kemmler-Sack, S., Treiber, U. and Cyris, W.-R., Z. Anorg. Allg. Chem. 466, (1980).CrossRefGoogle Scholar
8. Conflat, P., Boivin, J. C., Nowogrocki, G. and Thomas, D., Solid State Ionics 9&10, 925, (1983).CrossRefGoogle Scholar
9. Suzuki, M. and Murakami, T., J. Appl. Phys 5, 2330, (1984).CrossRefGoogle Scholar