Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-23T12:42:53.723Z Has data issue: false hasContentIssue false

Molecular Beam Epitaxy of Boron Nitride Thin Films and Their Analytical Characterization

Published online by Cambridge University Press:  15 February 2011

Robert F. Davis
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Box 7907 Raleigh, NC 27695–7907, USA
Daniel J. Kester
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Box 7907 Raleigh, NC 27695–7907, USA
K. Shawn Ailey
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Box 7907 Raleigh, NC 27695–7907, USA
Get access

Abstract

Boron nitride (BN) thin films have been grown on the (100) surfaces of Si, diamond, Ni and Cu via ion beam assisted deposition (IBAD) using electron beam evaporation of B in tandem with N and Ar ion bombardment within the ranges of substrate temperature and ion flux of 200–700°C and 0.20–0.30 mA/Cm2, respectively, Fourier-transform infrared spectroscopy (FTIR) and high resolution transmission electron microscopy (HRTEM) revealed a growth sequence of amorphous (a-BN), hexagonal (h-BN) and cubic (c-BN) layers on Si and diamond under most conditions. This sequence is attributed primarily to increasing biaxial compressive stress with film thickness due to interstitial Ar incorporation observed via Rutherford backscattering spectroscopy (RBS). The effect of deposition conditions, specifically substrate temperature and bombardment intensity, on the film growth was studied. Increasing the substrate temperature above 400°C led to the onset of the cubic phase at a greater film thickness, while increased ion flux led to earlier growth of this phase. These results may be explained by the relaxation of intrinsic stress in the films at higher temperatures due to increased adatom mobility and to increased intrinsic stress in the films resulting from increased ion bombardment, respectively. Lower temperatures led to mixed phase growth. A minimum substrate temperature (200–300°C) is required for nucleation and growth of single phase c-BN by this technique. A combination of h-BN and c-BN was deposited on Ni; only h-BN was obtained on Cu substrates.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Present Address: Armstrong World Industries, Research and Development, P. O. Box 3511, Lancaster, PA 17604.

References

1. Vel, L., Demazeau, G., and Etourneau, J., Materials Science and Engineering B 10, 149 (1991).Google Scholar
2. Era, K., Mishima, O., Wada, Y., Tanaka, J., and Yamaoka, S., in Electroluminescence, edited by Shionoya, S. and Kobayashi, H., (Springer Proceedings in Physics 38, New York, 1989) pp. 386392.Google Scholar
3. Wentorf, R. H. Jr., J. Chem. Phys. 26, 956 (1957).Google Scholar
4. Gashtold, V. N. et al. , Elektronnaya Tekhnika 12, 58 (1970).Google Scholar
5. Inagawa, K., Watanabe, K., Ohsone, H., Saitoh, K., and Itoh, A., J. Vac. Sci. Technol. A 5, 2696 (1987).Google Scholar
6. Kester, D. J. and Messier, R., in Phase Formation and Modification by Beam-Solid Interactions, edited by Was, G. S., Rehn, L. E. and Follstaedt, D. (Mater. Res. Soc. Symp. Proc. 235, Pittsburgh, PA, 1992) pp. 721727.Google Scholar
7. Wada, T. and Yamashita, N., J. Vac. Soc. Technol. A 10, 515 (1992).10.1116/1.578181Google Scholar
8. Bewilogua, K., Buth, J., Hübsch, H., and Grischke, M., Diamond and Related Materials, 2, 1206 (1993).10.1016/0925-9635(93)90171-WGoogle Scholar
9. Murakawa, M., Watanabe, S., and Miyake, S., Diamond Films and Technol. 1, 55 (1991).Google Scholar
10. Doll, G. L., Sell, J. A., Taylor, C. A. II, and Clarke, R., Phys. Rev. B, 43, 6816 (1991).10.1103/PhysRevB.43.6816Google Scholar
11. Friedmann, T. A., McCarty, K. F., and Klaus, E. J., Appl. Phys. Lett. 61, 2406 (1992).Google Scholar
12. Osaka, Y., Okamoto, M., and Utsumi, Y., in Low Energy Ion Beam and Plasma Modification of Materials edited by Harper, J. M. E., Miyake, K., McNeil, J. R. and Gorbatkin, S. M. (Mater. Res. Soc. Symp. Proc. 223, Pittsburgh, PA, 1991) pp. 8187.Google Scholar
13. Saitoh, H. and Yarborough, W., Applied Physics Letters, 58, 2228 (1991).Google Scholar
14. McKenzie, D. R., McFall, W. D., Sainty, W. G., Davis, C. A. and Collins, R. E., Diamond Relat. Mater. 2, 970 (1993).Google Scholar
15. McKenzie, D. R., J. Vac. Sci. Technol. B. 11, 1928 (1993).Google Scholar
16. Kester, D. J., Ailey, K. S., Davis, R. F., and More, K. L., J. Mater. Res. 8, 1213 (1993).Google Scholar
17. Kester, D. J. and Messier, R., J. Appl. Phys. 72, 504 (1992).Google Scholar
18. Kern, W. and Puo-tinen, D. A., RCA Rev. 31, 187 (1970).Google Scholar
19. Van Vechten, D., Hubler, G. K., and Donovan, E. P., Vacuum 36, 841 (1986).Google Scholar
20. Carter, C. H. Jr., Edmond, J. A., Palmour, J. W., Ryu, J., Kim, H. J. and Davis, R. F. in Microscopic Identification of Electronic Defects in Semiconductors, edited by Johnson, N. M., Bishop, S. G., and Watkins, G. (Mater. Res. Soc. Proc., 46, Pittsburgh, PA 1985) pp. 593598.Google Scholar
21. Tanabe, N., Hayashi, T., and Iwaki, M., Diamond and Related Materials 1, 151 (1992).10.1016/0925-9635(92)90015-GGoogle Scholar
22. Windischmann, H., J. Vac. Sci. Technol. A 7, 2247 (1989).Google Scholar
23. Windischmann, H., J. Appl. Phys. 62, 1800 (1987).Google Scholar
24. Windischmann, H., J. Vac. Sci. Technol. A 9, 2431 (1991).Google Scholar
25. Roy, R. A. and Yee, D. S., in Handbook of Ion Beam Processing Technology, edited by Cuomo, J. J., Rossnagel, S. M., and Kaufman, H. R., (Noyes, Park Ridge, NJ, 1989) pp. 194217.Google Scholar
26. Stambouli, V., Burat, O., Bouchier, D., and Gautherin, G., Surface and Coatings Technology 43/44, 137 (1990).10.1016/0257-8972(90)90068-NGoogle Scholar
27. Fahnline, D., Yang, B., Vedam, K., Messier, R., and Pilione, L., Mater. Res. Soc. Symp. Proc. 130, 355 (1989).Google Scholar