Hostname: page-component-7bb8b95d7b-5mhkq Total loading time: 0 Render date: 2024-09-20T01:49:30.274Z Has data issue: false hasContentIssue false

Modulated Hall-Effect Techniques for the Study of Transport Properties of Microcrystalline Silicon with Different Grain Sizes

Published online by Cambridge University Press:  10 February 2011

P. Hapke
Affiliation:
Forschungszentrum Jülich, ISI-PV, 52425-Jülich, Germany, p.hapke@kfa-juelich.de
U. Backhausen
Affiliation:
Forschungszentrum Jülich, ISI-PV, 52425-Jülich, Germany, p.hapke@kfa-juelich.de
R. Carius
Affiliation:
Forschungszentrum Jülich, ISI-PV, 52425-Jülich, Germany, p.hapke@kfa-juelich.de
F. Finger
Affiliation:
Forschungszentrum Jülich, ISI-PV, 52425-Jülich, Germany, p.hapke@kfa-juelich.de
S. Ray
Affiliation:
Indian Association for the Cultivation of Science, 700 032 Calcutta, India
Get access

Abstract

Highly doped μc-Si:H samples with a wide range of crystalline volume fractions and grain sizes have been investigated by Hall-effect experiments. We present an experimental set-up with a current modulation technique and a 6-pole contact geometry which allows the measurement of the Hall-effect on highly doped μc-Si:H down to 10K. The experimental results exhibit a clear correlation between the mobility μ and the grain size δ. Further, the results show that the transport in μc-Si:H can not be described by thermal emission over grain boundaries alone, additional transport paths, e.g. tunneling processes through the barriers have to be taken into account.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Finger, F., Hapke, P., Luysberg, M., Carius, R., Wagner, H. and Scheib, M., Appl. Phys. Lett. 65, p. 2588 (1994).Google Scholar
2. Luysberg, M., Hapke, P., Carius, R. and Finger, F., accepted for publication in Phil. Mag. A, 1996.Google Scholar
3. Hapke, P., Thesis, RWTH Aachen, Germany, 1995.Google Scholar
4. Houben, L., Diploma Thesis, University of Dusseldorf, Germany, 1995.Google Scholar
5. van der Pauw, L.J., Phillips Res. Repts. 13, p. 1 (1958).Google Scholar
6. Runyan, W.R., Semiconductor Measurements and Instrumentation, McGraw-Hill, Tokyo, 1975, p. 140.Google Scholar
7. He, D., Okada, N., Fortmann, C. and Shimizu, I., J. Appl. Phys. 76, p. 4728 (1994).Google Scholar
8. Dubois, J., Willeke, G., Prasad, K., Blenk, O., Shah, A. and Bucher, E., Proceedings of the 11th European Communities Photovoltaic Solar Energy Conference, p. 718 (1993).Google Scholar
9. Nakata, M., Namikawa, T., Shirai, H., Hanna, J. and Shimizu, I., Mater. Res. Soc. Symp. Proc. 192, p. 481 (1990).Google Scholar
10. Hapke, P., Finger, F., Carius, R., Wagner, H., Prasad, K. and Flückiger, R., J. Non-Cryst. Solids 164–166, p. 981 (1993).Google Scholar
11. Hapke, P., Luysberg, M., Carius, R., Finger, F. and Wagner, H. in Semiconductor Processing and Characterization with Lasers edited by Brieger, M (Material Science Forum 173–174, Aedermannsdorf, Switzerland 1995), p. 249.Google Scholar
12. Nocera, A. Di, Mittiga, A. and Rubino, A., J. Appl. Phys. 78, p. 3955 (1995).Google Scholar
13. Willeke, G. in Amorphous & Microcrystalline Semiconductor Devices, Vol 1, edited by Kanicki, J. (Artech House, Norwood, 1992), p. 5588.Google Scholar
14. Seto, J.W., J. Appl. Phys. 46, p. 5247 (1975).Google Scholar