Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-21T03:58:29.772Z Has data issue: false hasContentIssue false

Modelling the D.C. Electrical Conductivity of Mortar

Published online by Cambridge University Press:  21 February 2011

E.J. Garboczi
Affiliation:
National Institute of Standards and Technology, Building Materials Division, 226/B350, Gaithersburg, MD 20899
L.M. Schwartz
Affiliation:
Schlumberger-Doll Research, Old Quarry Road, Ridgefield CT 06877-4108
D.P. Bentz
Affiliation:
National Institute of Standards and Technology, Building Materials Division, 226/B350, Gaithersburg, MD 20899
Get access

Abstract

The interfacial zone separating cement paste and aggregate in mortar and concrete is believed to influence many of the properties of these composites. This paper presents a theoretical framework for quantitatively understanding the influence of the interfacial zone on the overall electrical conductivity of mortar, based on realistic random aggregate geometries. These same ideas may also be used to approximately predict the fluid permeability of mortar.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1) Garboczi, E.J., Cem. and Conc. Res. 20, 591 (1990).Google Scholar
2) Atkinson, A. and Nickerson, A.K., J. Mater. Sci. 19, 30683078 (1984).Google Scholar
3) Taylor, H.F.W., Cement Chemistry (Academic Press, San Diego, 1990).Google Scholar
4) Garboczi, E.J. and Bentz, D.P., J. Mater. Sci. 27, 20832092 (1992).Google Scholar
5) Coverdale, R.T., Christensen, B.J., Mason, T.O., Jennings, H.M., Bentz, D.P., and Garboczi, E.J., “Interpretation of the impedance spectroscopy of cement paste via computer modelling Part I: Bulk conductivity and offset resistance,” J. of Materials Science (1994), in press.Google Scholar
6) Whittington, H.W., McCarter, J., and Forde, M.C., Mag. of Conc. Res. 33, 4860 (1981).Google Scholar
7) Coverdale, R.T., Christensen, B.J., Mason, T.O., Jennings, H.M., and Garboczi, E.J., “Interpretation of the impedance spectroscopy of cement paste via computer modelling Part II: Dielectric response,” J. of Materials Science 29, 49844992 (1994).Google Scholar
8) Christensen, B.J., Mason, T.O., Jennings, H.M., Bentz, D.P., and Garboczi, E.J., MRS Soc. Symo. Proc. Vol. 245 (1992), pp. 259264.Google Scholar
9) Olson, R.A., Christensen, B.J., Coverdale, R.T., Ford, S.J., Jennings, H.M., Mason, T.O., and Garboczi, E.J., “Interpretation of the impedance spectroscopy of cement paste via computer modelling Part III: Microstructural analysis of frozen cement paste,” submitted to J. Mater. Sci.Google Scholar
10) Ping, X. and Ming-shu, T., II Cimento 85, 33 (1988).Google Scholar
11) Ping, X., Beaudoin, J.J., and Brousseau, R., Cem. and Conc. Res. 21, 515522 (1991).Google Scholar
12) Bretton, D., Ollivier, J.-P., and Ballivy, G., in Interfaces in Cementitious Materials (E. and F.N. Spon, London, 1993), pp. 269278.Google Scholar
13) Mindless, S. and Young, J.F., Concrete (Prentice-Hall, Englewood Cliffs, NJ, 1981).Google Scholar
14) Winslow, D.N., Cohen, M., Bentz, D.P., Snyder, K.A., and Garboczi, E.J., Cem. and Conc. Res. 24, 2537 (1994).Google Scholar
15) Goldman, A. and Bentur, A., Cem. and Conc. Res. 23, 962972 (1993).Google Scholar
16) Cohen, M.D., Goldman, A., and Chen, W.-F., Cem. and Conc. Res. 24, 9598 (1994).Google Scholar
17) Nilsen, A.U. and Monteiro, P.J.M., Cem. and Conc. Res. 23, 147151 (1993).Google Scholar
18) Scrivener, K.L., in Materials Science of Concrete I (American Ceramic Society, Westerville, Ohio, 1989).Google Scholar
19) Barnes, B.D., Diamond, S., and Dolch, W.L., J. Amer. Ceram. Soc. 62, 2124 (1979).Google Scholar
20) Young, J.F., in ACI SP-108 Permeability of Concrete, ed. Whiting, David and Hall, Arthur (American Concrete Institute, Detroit, 1988) pp. 118.Google Scholar
21) Houst, Y.F., Sadouki, H., and Wittmann, F.H., in Interfaces in Cementitious Composites, ed. Maso, J. (E & F.N. Spon, London, 1993), pp. 279288.Google Scholar
22) Bentz, D.P., Schlangen, E., and Garboczi, E.J., in Materials Science of Concrete IV (Amer. Ceram. Soc., Westerville, Ohio, 1994).Google Scholar
23) Garboczi, E.J., Schwartz, L.M., and Bentz, D.P., “Modelling the influence of the interfacial zone on the D.C. conductivity of concrete,” submitted to Journal of Advanced Cement-Based Materials.Google Scholar
24) Schwartz, L.M. and Banavar, J.R., Phys. Rev. B 39, 11965 (1989).Google Scholar
25) Kim, I.C. and Torquato, S., Phys. Rev. A 43, 31983201 (1991).Google Scholar
26) Hong, D.C., Stanley, H.E., Conoglio, A., and Bunde, A., Phys. Rev. B 33, 4564 (1986).Google Scholar
27) Schwartz, L.M., Garboczi, E.J., and Bentz, D.P., “Interfacial transport in porous media: Application to D.C. electrical conductsivity of mortars,” submitted to Phys. Rev. E.Google Scholar
28) Rue, R.E. De La and Tobias, C.W., J. of the Electrochemical Society 106, 827833 (1959).Google Scholar
29) Wong, P.Z., Physics Today 41, 2435 (1988).Google Scholar
30) Halamickova, P., Detwiler, R.J., Bentz, D.P., and Garboczi, E.J., “Water permeability and chloride ion diffusion in portland cement mortars: Relationship to sand content and critical pore diameter,” submitted to Cem. and Conc. Res.Google Scholar
31) Martys, N., Bentz, D.P., and Garboczi, E.J., Physics of Fluids A 6, 14341439 (1994).Google Scholar
32) Katz, A.J. and Thompson, A.H., J. of Geophys. Res. 92, 599 (1987).Google Scholar