Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-25T04:01:24.925Z Has data issue: false hasContentIssue false

Modelling The Alteration of Son-68 Glass with Nearfield Materials

Published online by Cambridge University Press:  21 March 2011

G. de Combarieu
Affiliation:
VRH/DTCD/SECM/LCLT, CEA Valrhô, site de Marcoule, France
P. Barboux
Affiliation:
LCAES-CNRS UMR 7574, ENSCP, Paris, France
N. Godon
Affiliation:
VRH/DTCD/SECM/LCLT, CEA Valrhô, site de Marcoule, France
Y. Minet
Affiliation:
VRH/DTCD/SECM/LCLT, CEA Valrhô, site de Marcoule, France
S. Gin
Affiliation:
VRH/DTCD/SECM/LCLT, CEA Valrhô, site de Marcoule, France
Get access

Abstract

The model tested in this paper couples glass dissolution rate and geochemistry in the surrounding environment, thus leading to the comprehensive description of the interactions between the glass and the minerals and their transformations. Leaching of glass is simulated at 90°C and S/V=80 cm-1 in pure water or with iron from the canister and overpack or with argillite. The glass dissolution is described with an affinity law with respect to a nontronite-like phase, which saturation state depends on Si, Al, Fe, Na and Ca activities. The simulations results allow to reproduce both the decrease of the initial alteration rate and the so-called residual regime while the composition of the alteration layers are explained in terms of precipitated phases. In presence of metallic iron, the corrosion does not affect much glass dissolution rate if silica sorption is neglected. On the contrary, in presence of argillite, the alteration is enhanced by the dissolution of primary clay minerals and the precipitation of feldspar, K-zeolite and clay minerals.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Van der Lee, J., 1993. TR LHM/RD/93/39. CIG, Fontainebleau, FranceGoogle Scholar
2. Godon, N., Vernaz, E., Thomassin, J.H., Touray, J.C., 1989. MRS Symp. Proc., 127, 97104.Google Scholar
3. Lemmens, K., Aertsens, M., Pirlet, V., Serra, H.; Valcke, E., De Cannière, P., 2001. MRS Symp. Proc., 663.Google Scholar
4. Gin, S., Jollivet, P., Mestre, J., Jullien, M., and Pozo, C., 2001. Appl. Geochem. 16, 861881.Google Scholar
5. McVay, G.L. and Buckwalter, C.Q., 1983. J. Am. Cer. Soc., 66 (3), 170174.Google Scholar
6. Inagaki, Y., Ogata, A., Furuya, H., Idemitsu, K., Banba, T., Maeda, T., 1996. MRS Symp. Proc., 412, 257264.Google Scholar
7. Abrajano, T.A., Bates, J.K., Woodland, A.B., Bradley, J.P., Bourcier, W.L., 1990. Clays and clay minerals, 38, 537548.Google Scholar
8. Gong, W.L., Wang, L.M., Ewing, R.C., Vernaz, E., Bates, J.K., Ebert, W.L., 1998. J. Nuc. Mat., 254, 249265.Google Scholar
9. Caurel, J., 1990. PhD thesis, university of Poitiers, France.Google Scholar
10. Ribet, I., 2004. DEN/DTCD/2004-4 CEA Internal report.Google Scholar
11. Ribet, I., Gin, S., Vernaz, E., Chaix, P.; Do Quang, R., 2001. Global 2001 Proceedings.Google Scholar
12. Aagaard, P., Helgeson, H.C., 1982. Am. J. Sci., 282, 237285.Google Scholar
13. Grambow, B., 1985. MRS Symp. Proc., 44, 1521.Google Scholar
14. Gin, S., 1996. MRS Symp. Proc., 412, 189196.Google Scholar
15. McGrail, B.P., Ebert, W.L., Bakel, A.J., Peeler, D.K., 1997. J. Nuc. Mat., 249, 175189.Google Scholar
16. Bourcier, W.L.; Peiffer, D.W.; Knauss, K.G.; McKeegan, K.D.; Smith, D.K., 1990. MRS Symp. Proc., 176, 209216.Google Scholar
17. Leclercq, S., De Windt, L., 2004. HT-24/04/038/A. EDF R&D Internal Report.Google Scholar
18. Frugier, P., Gin, S., Lartigue, J.E., Deloule, E., 2005. MRS Symp. Proc., to be published.Google Scholar
19. Trotignon, L., Bildstein, O., 2005. DEN/DTN/SMTM/LMTE 2005-26. CEA Internal Report.Google Scholar
20. Crovisier, J.L., Advocat, T., Dussossoy, J.L., 2003. J. Nuc. Mat., 321, 91109.Google Scholar
21. Common Thermodynamic Database Project, 2003. http://ctdp.ensmp.fr/Google Scholar
22. Savage, D., Noy, D., Mihara, M. (2002). Appl. Geochem., 17, 207223.Google Scholar
23. Mestre, J.P., Godon, N., Vernaz, E., 1992. NT/SCD/91-30. CEA Internal Report.Google Scholar
24. Munier, I., Crovisier, J.L., Grambow, B., Fritz, B., Clément, A., 2004. J. Nuc. Mat., 324, 97115.Google Scholar