Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-25T07:44:37.327Z Has data issue: false hasContentIssue false

Modelling of Grain Refinement in Aluminium Alloys

Published online by Cambridge University Press:  15 February 2011

A. L. Greer
Affiliation:
University of Cambridge, Department of Materials Science & Metallurgy, Pembroke Street, Cambridge CB2 3QZ, UK
A. Tronche
Affiliation:
University of Cambridge, Department of Materials Science & Metallurgy, Pembroke Street, Cambridge CB2 3QZ, UK
M. Vandyoussefi
Affiliation:
University of Cambridge, Department of Materials Science & Metallurgy, Pembroke Street, Cambridge CB2 3QZ, UK
Get access

Abstract

Commercial grain refiners for aluminium solidification are so potent that the barrier forgrain initiation is that for free growth rather than for nucleation itself. In this case quantitative prediction of grain size is possible. For small melt volumes a successful isothermal-melt model is presented. This is extended to directional solidification in a temperature gradient using cellular-automaton modelling of grain growth with finite-element heat-flow calculations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. McCartney, D. G., Int. Mater. Rev. 34, 247 (1989).Google Scholar
2. Kurz, W. and Trivedi, R., Mater. Sci. Eng. A179–180, 46 (1994).Google Scholar
3. Kim, W. T. and Cantor, B., Acta Metall. Mater. 42, 3115 (1994).Google Scholar
4. Schumacher, P., Greer, A. L., Worth, J., Evans, P. V., Kearns, M. A., Fisher, P. and Green, A. H., Mater. Sci. Technol. 14, 394 (1998).Google Scholar
5. Eustathopoulos, N., Coudurier, L., Joud, J. C. and Desré, P., J. Cryst. Growth, 33, 105 (1976).Google Scholar
6. Johnsson, M., Bäckerud, L. and Sigworth, G. K., Metall. Trans. A, 24, 481 (1993).Google Scholar
7. Maxwell, I. and Hellawell, A., Acta Metall. 23, 229 (1975).Google Scholar
8. Bunn, A. M., Evans, P. V., Bristow, D. J. and Greer, A. L., in Light Metals, edited by Welch, B. (TMS, Warrendale, PA, 1998) pp. 963968.Google Scholar
9. Greer, A. L., Bunn, A. M., Tronche, A., Evans, P. V. and Bristow, D. J., Acta Mater., submitted.Google Scholar
10. Standard Test Procedure for Aluminum Alloy Grain Refiners: TP-1 (The Aluminum Association, Washington, DC, 1987).Google Scholar
11. Spittle, J. A. and Sadli, S. B., Mater. Sci. Technol. 11, 533 (1995).Google Scholar
12. Hunt, J. D., Mater. Sci. Eng. 65, 75 (1984).Google Scholar
13. Bunn, A. M., Greer, A. L., Green, A. H. and Kearns, M. A., in Solidification Processing 1997, edited by Beech, J. and Jones, H. (Univ. of Sheffield, Sheffield, 1997) pp. 264267.Google Scholar
14. Bunn, A. M., Schumacher, P., Kearns, M. A., Boothroyd, C. B. and Greer, A. L., Mater. Sci. Technol. 15, 1115 (1999).Google Scholar
15. Evans, P. V., Worth, J., Bosland, A. and Flood, S. C., in Solidification Processing 1997, edited by Beech, J. and Jones, H. (Univ. of Sheffield, Sheffield, 1997) pp. 531535.Google Scholar
16. Calcom SA, Lausanne, Switzerland.Google Scholar
17. Kurz, W., Giovanola, B. and Trivedi, R., Acta Metall. 34, 823 (1986).Google Scholar
18. Gandin, Ch.-A. and Rappaz, M., Acta Metall. Mater. 42, 2233 (1994).Google Scholar
19. Gandin, Ch.-A., Charbon, Ch. and Rappaz, M., ISIJ Int. 35, 651 (1995).Google Scholar